Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for uplink power control, which is applied to a User Equipment (UE), and the method includes: determining a timing between a power control command and a Physical Uplink Control Channel (PUCCH), which adopts the power control command to control power. The present disclosure also provides a corresponding device.
Abstract:
A Filter Bank Multicarrier (FBMC) modulation-based signal transmitting method includes mapping, by a transmitter, an original Data Block (DB) with at least one symbol to a first Resource Block (RB), preprocessing the original DB, and mapping the preprocessed original DB to a second RB, modulating, by the transmitter, data of the first RB and the second RB by using a FBMC modulation, and, transmitting, by the transmitter, the data modulated. A transmitter, comprising a mapping module, a modulating module and a transmitting module, wherein the mapping module is to map an original DB with at least one symbol to a first resource block (RB), preprocess the original DB, and map the preprocessed original DB to a second RB, the modulating module is to modulate data of the first RB and the second RB, by using FBMC modulation, and, the transmitting module is to transmit the data modulated.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A bidirectional communication method and an apparatuses thereof are provided. An uplink control channel and a downlink control channel are respectively transmitted in a first subband and a third subband of an available un-paired spectrum, wherein control channels of reverse directions are transmitted at the same time in the first subband and the third subband, and uplink data and downlink data are transmitted in a time division multiplexing manner in a second subband of the available un-paired spectrum, wherein the first subband and the third subband are on the two ends of the available un-paired spectrum.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a differential beamforming based random access method, base station, and user equipment, wherein the differential beamforming based random access method comprises, by a base station: receiving a preamble sequence from a first terminal in a differential beamforming receiving mode; determining a base station beam direction angular deviation based on the preamble sequence; and adjusting a base station beam according to the base station beam direction angular deviation, and transmitting a random access response signal to the first terminal through the adjusted base station beam. In the present disclosure, by detecting a base station beam direction angular deviation in a differential beamforming receiving mode, a base station receiving beam can be adjusted to an optimal beam faster than a beam polling way of the prior art, thereby improving the performance of a random access procedure.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.According to a method for transmitting diversity, implemented at a transmitting end, space-time precoding is performed for a digital signal to obtain at least two coded signal streams, and then each coded signal stream is transmitted using a respective transmitting and receiving unit (TXRU) equipped with a multi-antenna array, in which an antenna array weight used by the respective TXRU to transmit each coded signal stream is one of two sets of antenna array weights, and at least two TXRUs use two different sets of antenna array weights. The present disclosure also discloses a corresponding transmitter. With the present disclosure, transmitting diversity may be realized in a large-scale antenna system.
Abstract:
A Filter Bank Multicarrier (FBMC) modulation-based signal transmitting method includes mapping, by a transmitter, an original Data Block (DB) with at least one symbol to a first Resource Block (RB), preprocessing the original DB, and mapping the preprocessed original DB to a second RB. modulating, by the transmitter, data of the first RB and the second RB by using a FBMC modulation, and, transmitting, by the transmitter, the data modulated. A transmitter, comprising a mapping module, a modulating module and a transmitting module, wherein the mapping module is to map an original DB with at least one symbol to a first resource block (RB), preprocess the original DB, and map the preprocessed original DB to a second RB, the modulating module is to modulate data of the first RB and the second RB, by using FBMC modulation, and, the transmitting module is to transmit the data modulated.