Abstract:
An eddy current sensor that can be mounted on the outside of a casing for a turbine or other rotating machinery to measure characteristics of nearby, moving, electrically conductive objects through the casing. Monodirectional and omnidirectional sensors are provided. High-strength uniaxial permanent magnets generate static magnetic fields. A signal voltage is produced on a wound coil in response to a variable magnetic field caused by eddy currents in the conductive object as the conductive object passes through the stationary magnetic field. The present invention sensors are also directed to measuring characteristics of turbine blades through jet engine casings.
Abstract:
One method according to the present invention may include defining a first object. The first object may have a unique object identifier. The method may also include defining a second object. The second object may also have a unique object identifier. After the objects have been identified, the method may include receiving a first value and a second value associated with the first object. The method may also include representing either an agreement and a lack of agreement associated with the first object based on a relationship between the first value and the second value. In an alternative embodiment, both an agreement and a disagreement may be represented based on the first value and the second value. In one embodiment of the invention, the representation of an agreement and/or a disagreement may be performed internally, using, for example, hexadecimal or binary representations of agreement or a lack of agreement. In yet another embodiment of the invention, a first single-perspective model and a second single-perspective model may be compared to form a multi-perspective model. Intentions of the parties within the collaborative community may be maintained throughout the modeling process.
Abstract:
The disclosure relates to a trusted interface unit and a method of making and using the same. According to one embodiment of the present invention, a method of transmitting data on a network may include receiving data from a partition within a node on the network. This node may be configured to transmit data associated with a number of sensitivity levels. According to one embodiment of the invention, these sensitivity levels may be classification levels. One method of transmission of data may include determining the identity of the partition that originated the data within the node. Furthermore, a label may be added to the data received from within the node and the data may be encrypted with a key that may be uniquely associated with the label on the data. After encryption, the data may be transmitted on the network. Additional methods including the reception of data are disclosed. Various node and network architectures are disclosed implementing the methods and apparatus of the present invention.
Abstract:
An embodiment of the present invention relates to the protection of electronic displays and includes a guard configured to protect a lighting means while providing an expanded field of view. The guard may include a first element and a second element each having at least a top surface and a wall. The lighting means may be positionable substantially between the first element and the second element such that the top surface of the lighting means is below the first top surface and the second top surface to protect the lighting means from incidental impact. A gap between the first and second elements provides a field of view. The field of view may include a substantially orthogonal line of sight to one side surface of the lighting means.
Abstract:
A method according to a first aspect may include performing a first analog-to-digital (A/D) conversion using an A/D converter. Data associated with this first A/D conversion may be read using a processor. A command may then be issued from a processor when the reading of the data has started. This command may instruct the A/D converter to perform a second A/D conversion. This data may then be stored in a data structure located within a memory device while the A/D converter is performing the second A/D conversion. In addition to performing such pipelined A/D conversions, the present invention may include a system, method and software for filtering out noise in a voltage measurement after the voltage measurement has been converted to a digital signal by omitting the highest and lowest voltage values and averaging the remainder of the voltage values, thereby reducing noise in the voltage measurements.
Abstract:
A mount for use in an optical fiber hydrophone module to loosely secure hydrophone components while avoiding increasing noise to the hydrophone. A hydrophone core has a plurality of mandrels helically wrapped with optical fiber and connected along an axis. A cylindrical metal cage encircles the hydrophone core. Cloth tape is wrapped around and affixed to the metal cage. An open pore foam goes around the metal cage. Thermoplastic adhesive attaches the foam to the cloth tape. A cylindrical woven internal strength member goes around the foam, including two longitudinal positioning tapes. The positioning tapes are fastened to the member at each end, and the foam is between the positioning tapes. Thread is used to sew the positioning tapes to the foam at spaced intervals along the axis.