Abstract:
A method, computer readable medium, and system are disclosed for classifying video image data. The method includes the steps of processing training video image data by at least a first layer of a convolutional neural network (CNN) to extract a first set of feature maps and generate classification output data for the training video image data. Spatial classification accuracy data is computed based on the classification output data and target classification output data and spatial discrimination factors for the first layer are computed based on the spatial classification accuracies and the first set of feature maps.
Abstract:
A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.