Abstract:
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational, if an open neutral condition exists or if the device is reverse wired. Methods for ensuring a reset lock out state before shipment are provided.
Abstract:
Resettable circuit breakers having an independent trip mechanism and a reset lockout are provided. The trip mechanism operates independently of the fault protection operations, and the reset lockout prevents the resetting of the circuit breaker if the fault protection is non-operational or if an open neutral condition exists.
Abstract:
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational, if an open neutral condition exists or if the device is reverse wired. Methods for ensuring a reset lock out state before shipment are provided.
Abstract:
A miniature circuit breaker includes separable contacts, an operating mechanism structured to open and close the separable contacts, a microprocessor including a thermal overload predictive function, and a shunt wire in series with the separable contacts. The shunt wire is structured to measure current flowing through the separable contacts for the thermal overload predictive function and an arc fault protective function.
Abstract:
The present invention is directed to a protective device that includes a plurality of line terminals configured to be connected to an electrical distribution system, and a plurality of load terminals configured to be connected to at least one load. The device includes a fault detection circuit coupled to the plurality of line terminals and the plurality of load terminals. The fault detection circuit is configured to detect at least one fault condition. A power interruption circuit coupled to the fault detection circuit, the power interruption circuit including a set of movable contacts configured to decouple the plurality of line terminals from the plurality of load terminals in response to the fault detection circuit detecting the at least one fault condition. A reset mechanism is coupled to the power interruption circuit and configured to actuate the movable contacts to re-couple the plurality of line terminals to the plurality of load terminals. A lock-out mechanism is coupled to the reset mechanism. The lockout mechanism is configured to disable the reset mechanism in a lock-out state. A test circuit is coupled to the fault detection circuit and the lock-out mechanism. The test circuit is configured to provide a simulated fault signal to the fault detection circuit. The test circuit is configured to drive the lock-out mechanism from an unlocked state to the lock-out state if the fault detection circuit and/or power interruption circuit fails to respond to the simulated fault signal within a predetermined period of time.
Abstract:
An arc fault circuit breaker includes a housing, separable contacts, an operating mechanism adapted to open and close the separable contacts, and an arc fault trip mechanism cooperating with the operating mechanism to trip open the separable contacts. The arc fault trip mechanism includes an arc fault test circuit adapted to simulate an arc fault trip condition to trip open the separable contacts. A proximity sensor, such as a Hall effect sensor, is adapted to sense a magnetic target to actuate the arc fault test circuit.
Abstract:
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational, if an open neutral condition exists or if the device is reverse wired. Methods for ensuring a reset lock out state before shipment are provided.
Abstract:
Resettable circuit interrupting devices using a center latch are provided. The circuit interrupting devices include those with a reset lockout, reverse wiring protection, and/or an independent trip portion.
Abstract:
This invention relates to a circuit interrupting device having a trip button for disconnecting a load from a source of electrical power and a reset button for resetting the device after it has tripped. When the device is operating in its reset state, a source of electrical power is connected to a load through a set of contacts located within the device. The contacts are held closed by the spring loaded reset button which holds captive and urges a latch plate to move up to close normally open contacts. In the preferred mechanical trip mechanism, depressing the trip button causes the latch plate to move forward and be released from the reset button. The latch plate, upon being released from the reset button moves down to allow the contacts, which are biased to be normally open, to assume their normally open position. At this time, pressing the reset button initiates an electrical cycle which causes the normally open contacts to close only if the device is operating properly and there is no fault on the line. The device described is mechanically tripped and electrically reset, and it can be tripped without power being supplied to the device.