Abstract:
Systems, methods and apparatuses are provided for mitigating interference in wireless networks, and particularly in an advanced backhaul wireless network comprising several hubs, each hub serving its own remote backhaul modules (RBMs). Preferred embodiments provide practical power spectrum adaptation methods for the management of interhub interference. These methods are shown to improve the overall network throughput significantly compared to a conventional network with fixed transmit power spectrum. Optionally, joint scheduling and power control are used to optimize the network utility. Also provided are methods which evoke the channel average gains generated by measurements for managed adaptive resource allocation (MARA). The proposed methods are computationally feasible and fast in convergence. They can be implemented in a distributed fashion across all hubs. Some of the proposed methods can be implemented asynchronously at each hub.
Abstract:
A system, method, and software are provided for measuring co-channel interference in a wireless network with particular application for management of resource allocation for Non Line of Sight (NLOS) wireless backhaul in MicroCell and PicoCell networks. Given the difficulty of predicting the mutual interference between multiple links, DownLink and UpLink co-channel interference are characterized between each Hub and each Remote Backhaul Module Unit periodically during active service. Beneficially, the co-channel interference metrics are used as the basis for intelligently and adaptively managing network resources to substantially reduce interference and increase the aggregate data capacity of the network e.g. by grouping of interfering and/or non-interfering links, and managing resource block allocations accordingly, i.e. assigning common resource blocks preferentially to weakly interfering links or groups of links and allocating different resource blocks or orthogonal channels to strongly interfering links or groups of links.