Abstract:
A method is provided for identifying colors across illuminants using a processor configured by code executing therein, the method comprising capturing a sample image with an image recording device, the image including pixels resenting a color sample under analysis and a color reference chart. The processor is also configured to execute comparing the color values of pixels representing the color reference chart of the sample image to the pixel values corresponding to a plurality of entries within a plurality of color reference datasets to determine the color reference having the closest match of sample captured in the image. The reference identifier of the color that is the closest match to the sample is then output for further use.
Abstract:
Various embodiments of the systems and methods described herein are directed towards training an artificial neural network to identify color values of a sample by providing image data obtained through multiple image capture devices under a plurality of lighting conditions. The present invention also includes using a pre-trained neural network to identify the color values of a sample having an unknown color value by capturing an image of an unknown color sample and known color reference samples under any illumination or hardware configuration.
Abstract:
The present invention is directed to an apparatus and method for determining a set of gloss measurement values of a sample to be measured. The invention includes a plurality of light sources having a light output, the plurality of sources configured to project light in the direction of a single sample having a gloss characteristic to be measured, wherein the planes of incidence of the light sources are arrayed at different azimuthal angles about the perpendicular direction of the sample. Furthermore, the invention includes a plurality gloss-sensitive sensors, each positioned at 180 degrees of azimuthal angle from the plurality of light sources so as to receive light reflected off a sample and output a plurality of measured gloss sample channel values and a processor configured to compare the outputs of the plurality of sample channel values and generate a plurality of angle-indexed gloss measurement values.
Abstract:
In the disclosure provided herein, the described apparatus, systems and methods are directed to compensation of errors caused by the difference between the specular port and the sphere in a sphere-based color-measurement instrument, and improvement of the performance of the instrument. In one or more implementations, described approaches eliminate the need for hardware replacement, and therefore reduce costs associated with the operation of color measurement instruments.
Abstract:
In the disclosure provided herein, the described apparatus, systems and methods are directed to compensation of errors caused by the difference between the specular port and the sphere in a sphere-based color-measurement instrument, and improvement of the performance of the instrument. In one or more implementations, described approaches eliminate the need for hardware replacement, and therefore reduce costs associated with the operation of color measurement instruments.
Abstract:
A method has been developed to improve the stability of a color measurement system that measures reflectances using matrix-transformation method. The transformation matrix can be obtained by training with a raw measurement matrix and a master reflectance matrix. The raw measurement matrix can be stacked with one or more of its variations, with each variation being some random noise added onto a part or the whole original raw signal matrix. The same number of master reflectance matrices are also stacked to match the size and sample ordering of the raw measurement matrix. The resulting transformation matrix will be more stable and less sensitive to the measurement noise.
Abstract:
A method includes determining a fielded color measurement instrument is not calibrated to measure light emitted by a fielded light emitting device, assembling a calibration matrix, such that a product of the calibration matrix multiplied by a response of the fielded color measurement instrument to the light emitted by the fielded light emitting device is a triplet that corresponds to a Commission Internationale de L'éclairage XYZ color space, wherein the calibration matrix contains measurements made by the fielded color measurement instrument of a first plurality of lights emitted by the fielded light emitting device and measurements made by a spectroradiometer of a second plurality of lights emitted by a reference light emitting device of a same make and model as the fielded light emitting device, wherein the spectroradiometer is located remotely from the fielded color measurement instrument, and storing the calibration matrix on the fielded color measurement instrument.
Abstract:
A processing system of a mobile device acquires an image of an object of a target color, wherein the image was captured by an integrated digital camera of the mobile device, calculates a first plurality of values that describes the target color, and wherein the calculating is based on an analysis of a pixel of the image, and identifies a first candidate color from among a plurality of candidate colors, wherein each candidate color in the plurality of candidate colors is associated with a second set of values that describes the each candidate color, and wherein the second set of values describing the first candidate color matches the first set of values more closely than any second set of values associated with another candidate color of the plurality of candidate colors.
Abstract:
Embodiments of the present invention are directed towards systems, methods and computer program products for correcting inter-instrumentation variation among color measurement devices. In one particular implementation, a method for correcting inter-instrument variation among color measurement devices includes obtaining a set of color measurements of an item under analysis. The described approach also includes accessing a conversion model, wherein the conversion module has been generated using one or more ANN back propagated over a collection of data points, where the data points correspond to measurements of a color standard using devices from a control device batch and a test device batch. Using the conversion module, a processor is configured to transform the set of color measurements into a calibrated color measurement set. The calibrated color measurement set is then output to at least one display, memory or remote computing device.
Abstract:
A color measurement system is provided that includes an integrating sphere having at least one specular component included (SCI) sensor configured to output a signal in response to light incident thereupon and at least one specular component excluded (SCE) sensor configured to output a signal in response to light incident thereupon, a sample port, a SCE port, a light source configured to direct a beam of light into the sphere and provide illumination at the sample port and a specular component excluded port. The system also includes a processor having a memory and configured by code to activate the light source so as to cause a beam of light to be directed into the sphere and provide illumination to the sample port. The processor is also configured to receive a signal output by the SCI sensor and a signal output by the SCE sensor. Furthermore, the processor is configured to obtain at least one measurement coefficient value and generate a corrected SCE measurement value using at least the SCI sensor value, the SCE sensor value and the obtained measurement coefficient. The processor is configured to output at least the corrected SCE measurement value and the SCI measurement value.