Abstract:
This invention relates to a self-aligning clutch release bearing assembly comprising a rolling element bearing having a rotary race which in use engages with a clutch member, and a non-rotary race mounted on a support for transmission of a clutch release load. The non-rotary race is relatively movable on the support transversely to the rotary axis of the bearing assembly to permit in use self-alignment of the rotary axis of the bearing with rotary axis of the clutch member. This movement is controlled by a layer of viscous material interposed between the support and the non-rotary race. The viscous material exhibits some resilience and up to a given value resistance to plastic flow so that the material locates the non-rotary race but allows it to move to achieve self-alignment on operation of the clutch in use.
Abstract:
The invention relates to automobile friction clutch driven plates, and in particular to driven plates having idling vibration dampers and load vibration dampers. The friction clutch driven plate includes two concentric hub members. On one hub member is mounted a friction facing carrier capable of limited restrained angular movement about the hub axis relative to the hub members. The friction facing carrier and the other hub member have spring seatings, being hub member seatings and carrier seatings, so that springs acting between the seatings oppose relative rotational movement between the hub members. The construction of the driven plate is made compact and simplified by having the hub member seatings and carrier seatings in a common radial plane.