Abstract:
Example embodiments, relate to a non-volatile memory element and a memory device including the same. The non-volatile memory element may include a memory layer having a multi-layered structure between two electrodes. The memory layer may include first and second material layers and may show a resistance change characteristic due to movement of ionic species therebetween. The first material layer may be an oxygen-supplying layer. The second material layer may be an oxide layer having a multi-trap level.
Abstract:
A method and system for generating a developer interface using a loaded program. The method of generating a developer interface may share a plurality of components included in a loaded program through a communication interface, and generate a new program using components selected from among the plurality of shared components through the developer interface.
Abstract:
Bipolar memory cells and a memory device including the same are provided, the bipolar memory cells include two bipolar memory layers having opposite programming directions. The two bipolar memory layers may be connected to each other via an intermediate electrode interposed therebetween. The two bipolar memory layers may have the same structure or opposite structures.
Abstract:
Provided is a resistance random access memory (RRAM) device and a method of manufacturing the same. A resistance random access memory (RRAM) device may include a lower electrode, a first oxide layer on the lower electrode and storing information using two resistance states, a current control layer made of a second oxide on the first oxide layer and an upper electrode on the current control layer.
Abstract:
A burst-mode optical receiver is provided. The burst-mode optical receiver includes a preamplifier, a post-amplifier integrated into one body together with the preamplifier, and an operation controller for controlling operation of the preamplifier and the post-amplifier using an external reset signal input from a single external reset input terminal. As a result, it is possible to implement a burst-mode receiver for a gigabit-capable passive optical network (GPON) in which a preamplifier unit and a post-amplifier unit are integrated.
Abstract:
A resistive random access memory (RRAM) includes a resistive memory layer of a transition metal oxide, such as Ni oxide, and is doped with a metal material. The RRAM may include at least one first electrode, a resistive memory layer on the at least one first electrode, the resistive memory layer including a Ni oxide layer doped with at least one element selected from a group consisting of Fe, Co, and Sn, and at least one second electrode on the resistive memory layer. The RRAM device may include a plurality of first electrodes and a plurality of second electrodes, and the resistive memory layer may be between the plurality of first electrodes and the plurality of second electrodes.
Abstract:
The present invention relates to an integrated, composite hybrid electric device in which various devices are formed as a single unit on one flexible substrate, and a fabrication method thereof. More particularly, the present invention a hybrid electric device in which a display device, a vibration-generating (or vibration-sensing) device, and a non-volatile memory device are formed on a single flexible piezoelectric polymer substrate into a single unit by using a flexible piezoelectric polymer substrate whose both surfaces are thinly deposited with a patterned transparent oxidation electrode, and a fabrication method thereof.
Abstract:
Disclosed is a method of registering only an authorized optical network terminal among a plurality of optical network terminals with the same serial number, in an optical line terminal, using a public key encryption algorithm, in a Gigabit Passive Optical Network (GPON). According to an exemplary aspect, a GPON system encrypts a physical layer OAM message transmitted/received for serial number registration of an optical network terminal, using a key distributed according to a public key encryption algorithm, and authenticates registration of the optical network terminal using the encrypted physical layer OAM message. Accordingly, it is possible to securely authenticate registration of an authorized optical network terminal and block registration of unauthorized optical network terminals.
Abstract:
A plasma display device is provided. In the plasma display device, a plurality of scan electrodes are divided into one or more scan electrode groups, and different driving signals are applied to the scan electrode groups. More specifically, different scan bias voltages are applied to the scan electrodes during a scan period, and different signals are applied to the scan electrodes during a set-down period of a reset period. Therefore, it is possible to stabilize an address discharge in scan electrodes to which scan signals are applied late.
Abstract:
Provided are a hybrid optical transceiver module having an optical amplifier packaged thereto for outputting a high-power optical signal to remove problems regarding narrow emission angle and optical alignment, and a passive optical network (PON) system having an improved optical network terminal (ONT) accommodation capability using the hybrid optical transceiver module. The hybrid optical transceiver module includes a first package in which an LD (laser diode) is packaged, and a second package in which SOA (semiconductor optical amplifier) and a PD (photo diode) are packaged. The first and second packages are coupled to be one package so as to output a high-power optical signal.