Abstract:
A DC to DC converter converts a DC input voltage into a plurality of DC output voltages and includes a circuit stage having switching elements for converting a DC input voltage into a first AC signal (VAC1). A first resonant circuit converts a first AC signal into a second AC signal which is used for forming a first DC output voltage. A second resonant circuit converts the first AC signal into a third AC signal which is used for forming a second DC output voltage. A control circuit sets various frequency ranges for the first AC signal to set various supply power modes, such as for normal operation and standby mode.
Abstract:
A converter includes circuit elements for chopping a DC voltage, in which switch-on phases of the circuit elements are alternating. A circuit assembly with resonant elements is used for processing the chopped DC voltage and for producing an output voltage. The voltage present at one of the circuit elements is compared with a threshold in a dead time phase before the circuit element is switched on. The comparison result is used to determine whether an inductive or capacitive converter load is present. Alternatively, a differential quotient of the voltage present at one of the circuit elements during the dead time phase is used to determine whether an inductive or capacitive converter load is present.
Abstract:
A voltage converter for converting an input voltage into at least a first high output voltage and a second lower output voltage. An input resonant circuit includes a transformer primary winding. At least first and second output circuits, each of which includes a respective secondary winding or a part of a secondary winding of the transformer and which supply the first and second output voltages. The second output circuit includes a rectifier arrangement supplying a DC output voltage. To improve the synchronism of the output voltages, i.e. reduce the cross-regulation, an additional capacitance is connected parallel to the secondary winding of the second output circuit and is dimensioned such that its capacitance, transformed to the primary winding essentially corresponds to the capacitance, transformed to the primary winding, of a parallel capacitance of the secondary winding of the first output circuit. Alternatively, a subsidiary circuit can be added to the second output circuit comprising an additional transformer secondary winding with an additional capacitor and an additional rectifier arrangement in a series circuit arranged parallel to a branch of the rectifier arrangement and to a load connected thereto.
Abstract:
A circuit arrangement for supplying a load (15) with energy from a power supply mains (1 to 5; 21, 22, 23) conveying at least one alternating voltage (UW; R, S, T) includes a simple network to ensure both a uniform energy supply of the load (15) and a reliable suppression of interference from the load to the power supply mains and in the reverse direction by means of a rectifier arrangement (7 to 10) which for each terminal (4, 5; 21, 22, 23), of the power supply mains includes a rectifier stage (7, 8; 9, 10; 24, 25; 26, 27; 28, 29) constituted as a first branch of a bridge rectifier. For each rectifier stage an energy storage device (11; 12; 30; 31; 32) can be charged by and is connected to said stage in accordance with a complementary branch of the bridge rectifier. For each stage a switching element (13; 14; 33; 34; 35) is provided for connecting each energy storage device to the load. A control circuit (18; 36; 191, 192) switches the switching elements-- cyclically following the charge of the energy storage devices from the power supply mains, via the rectifier stages. The switching elements are switched to conduct outside of the charge time intervals of the storage devices (i.e. the conducting phases of the rectifier stages).