Abstract:
Methods and receiver circuits are provided for correlating an incoming signal with PN codes. An embodiment of the method includes receiving I/Q baseband samples in the I/Q domain; converting the I/Q baseband samples to phase baseband samples; generating a pseudonoise (PN) code; converting the PN code to PN phase data; performing a correlation on the phase baseband samples using the PN phase data to generate correlated I/Q values; performing an adding operation on the correlated I/Q values to generate demodulated I/Q values; converting the demodulated I/Q values into demodulated phase values; performing a frequency correction operation on the demodulated phase values to generate frequency correction data; converting the demodulated I/Q values into demodulated magnitude values; and performing signal decoding and synchronization on the magnitude values to generate output data. The operation of performing correlation on the phase baseband samples using the PN phase data is accomplished using scalar subtraction.
Abstract:
A method and apparatus for data collision detection and resolution in a multi-processor communication system. The system includes a plurality of processors coupled via a common bus. When it is required that one processor communicate with another processor, the first processor determines whether a data collision flag is set. The processor then checks a number of indicators to determine whether the identity of the transmitting processor is what it is expected to be. If a data collision is found, the processor waits a selective time before transmitting a message. The processor then repeats the data collision checking and transmitting the message to the other processor when no data collision is found. The time to wait is dependent upon the identity of the processor and is table driven.