Abstract:
An apparatus for making a reinforced elastomeric fabric having a gauge thickness G and a cord spacing S, the apparatus comprising: a die having a plurality of holes for receiving a reinforcement cord, the holes providing a cord spacing of about S/2, a first and second calender roll located adjacent the die, the die having a end plate having a slot wherein the slot is located adjacent a calender roll so that the reinforcement cords are pressed into engagement with a ribbon of elastomeric material, the calender rolls being spaced to provide a gauge thickness of about G/2, the apparatus further comprising a cutter for cutting the ribbon of reinforced elastomeric material into segments having a length L, each segment having a width W, each segment having lateral edges, said apparatus further comprising a pick arm for placing a plurality of segments onto a conveyor so that the lateral ends of adjacent segments are lap spliced together, the lap splice having a width W/2.
Abstract:
Method for providing precured innerliners (50) having a predetermined cross sectional profile for use as part of a pneumatic tire assembly used in a bladder-less shaping and vulcanizing mold. The innerliner (50) is formed from a continuous strip of elastomeric material (12) hot formed using a calender assembly (10) with a profiled calender roller (16). The formed strip is cured “in-line” in a press (38) having a profile matching platen (80) before being wound onto a tire building drum (48). After the pneumatic tire assembly is completed, the assembly is shaped and cured in a bladder-less mold, utilizing the precured innerliner as the impervious inner layer. Initially, the center region (62) of the innerliner is at least twice as thick as the lateral regions (72, 74). In the finished pneumatic tire, the innerliner exhibits a uniform thickness.
Abstract:
A method and apparatus 200 for building a laminate 10A and in forming a subassembly 10 for a pneumatic tire from an assembly of reinforced or unreinforced tire components wherein the method has the steps of providing an apparatus 200 for simultaneously forming, positioning, attaching and conveying a plurality of continuous strips of elastomeric tire components and activating the apparatus simultaneously forming, positioning and attaching the plurality of continuous strips of elastomeric tire components to adjacent strips of tire components as they are conveyed thus forming a laminate 10A of reinforced or unreinforced tire components suitable for use as a subassembly for a pneumatic tire.
Abstract:
A non-pneumatic tire includes a plurality of springs. Each spring includes a first end portion, a second end portion, and an arching middle portion. Each spring is interwoven with at least one other spring thereby forming a toroidal structure extending about an entire circumference of the non-pneumatic tire. The toroidal structure is at least partially coated with an elastomer. One end portion of at least one spring is wrapped around a first bead structure adjacent a rim.
Abstract:
A non-pneumatic tire includes a plurality of springs. Each spring comprises a first end portion, a second end portion, and an arching middle portion. Each spring is interwoven with at least one other spring thereby forming a toroidal structure extending about an entire circumference of the non-pneumatic tire. The toroidal structure is at least partially coated with an elastomer.
Abstract:
The method of building and transferring a tread belt structure on a portable and collapsible building drum 10 mounted coaxially on a building machine 100 with a rotatable shaft 120 is disclosed. The method includes the steps of forming the annular tread belt 4 on the building drum 10, transferring the building drum 10 with the tread belt 4 from the rotatable shaft 120 onto a pivoting transfer device 200, pivoting the transfer device 200 about 90° rendering the tread belt 4 and axis of the building drum 10 perpendicular to a horizontal plane, collapsing the building drum 10, separating the annular tread belt 4 from the building drum 10, removing the tread belt 4, expanding the tire building drum 10, pivoting the building drum 10 into coaxial alignment with the rotatable shaft 120, moving the building drum 10 onto the shaft 120. The tread belt 4 has one or more elastomeric components applied while hot and the equipment provides means for weighing the tread belt 4.
Abstract:
A tire includes a plurality of helical springs. Each helical spring includes a first end portion, a second end portion, and an arching middle portion. Each helical spring is interlaced with at least one other helical spring thereby forming a laced toroidal structure extending about an entire circumference of the tire.
Abstract:
A tire having an outside-in ply construction is provided which torques the tire bead into the rim of the wheel to which it is mounted. The tire has first and second axially-spaced bead cores, a carcass having at least one belt extending under a tread, and a first ply layer having first and second ends. A first end is located axially outside and adjacent a first bead core, and a second end folds from a position axially outside a second bead core to a position axially inside and around the second bead core. The carcass further comprises a second ply layer having first and second ends, a first end is located axially outside and adjacent the second bead core, and a second end that folds from a position axially outside a first bead core to a position axially inside and around the first bead core. The tire may also comprise a first and second axially-spaced bead core, a carcass having at least one belt extending under a tread, and a first ply layer having first and second ends, a first end is located axially outside and adjacent a first bead core, and a second end that is located axially outside and adjacent a second bead core. The carcass further comprises first and second shoulder ply layers each shoulder ply layer having first and second ends, a first end is located under the tread belt, the shoulder ply extending down the side wall region with the second end folding from a position axially outside a respective bead core to a position axially inside and around the bead core.
Abstract:
The method of building and transferring a tread belt structure on a portable and collapsible building drum 10 mounted coaxially on a building machine 100 with a rotatable shaft 120 is disclosed. The method includes the steps of forming the annular tread belt 4 on the building drum 10, transferring the building drum 10 with the tread belt 4 from the rotatable shaft 120 onto a pivoting transfer device 200, pivoting the transfer device 200 about 90° rendering the tread belt 4 and axis of the building drum 10 perpendicular to a horizontal plane, collapsing the building drum 10, separating the annular tread belt 4 from the building drum 10, removing the tread belt 4, expanding the tire building drum 10, pivoting the building drum 10 into coaxial alignment with the rotatable shaft 120, moving the building drum 10 onto the shaft 120. The tread belt 4 has one or more elastomeric components applied while hot and the equipment provides means for weighing the tread belt 4.
Abstract:
The invention describes a method and apparatus for forming splice ends for elastomeric strips. The splicing ends each have a low angle splicing surface and an abutment surface. The combination of surfaces provide a precise way to locate and join splices.