Abstract:
A hollow inner plunger for use within a syringe-in-syringe mixing system for mixing a two-part dental composition. The hollow inner plunger includes a body having a continuous cylindrical wall defining an internal chamber for containing a first component. The body includes a proximal end and a distal end. A sealing plug and rupturable membrane are disposed at the distal end of the body, and the sealing plug and rupturable membrane are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system includes a first plunger, the hollow inner plunger as described above, and a syringe barrel configured to contain a second component. When assembled, the first plunger is slidably disposed within the hollow inner plunger, and the hollow inner plunger is slidably disposed within the syringe barrel. The two components are initially separated by the rupturable membrane.
Abstract:
A dental curing light includes a device body that efficiently conducts heat away from the light emitting diode portion of the curing light. The device body includes a proximal gripping end and a distal head end. The device body is formed from a thermally conductive body material. Excellent heat conduction away from the LED dies is achieved using a thermally conductive layer disposed over the device body. The thermally conductive layer serves as a conduit to quickly conduct heat away from the LED dies for dissipation within the material of the device body In this manner, the material of the device body serves as a highly efficient heat dissipater. The surface area coupling the thermally conductive layer to the device body is sufficiently large that a majority (e g, substantially all) of heat being conducted by the thermally conductive layer is transferred to the device body during operation of the device.