Abstract:
A detection device includes: a detection member that includes an emission member emitting a beam toward a transportation direction of a transportation path and a beam receiving member receiving a reflected beam of the beam emitted from the emission member, and that detects an image on a medium; a transmissive member that allows the beam emitted from the emission member and the beam reflected from the medium to be transmitted therethrough; and a support member that has an open portion blocked by the transmissive member, and that supports an upstream end portion of the transmissive member in the transportation direction of the medium at an upstream portion of the open portion toward the medium, an edge portion of a downstream portion of the open portion in the transportation direction being located closer to the emission member than a bottom surface of the transmissive member.
Abstract:
A detection apparatus includes a transmission member that is provided facing a conveying path on which a medium is conveyed and that transmits light from the medium being conveyed on the conveying path; a detection section that detects the medium or an image on the medium according to the light which is transmitted by the transmission member, wherein the light is received by a light-receiving member of the detection section; and an opposing member provided on an opposite side of the conveying path from the transmission member and having at least one opposing surface that faces the transmission member. In a conveying direction of the medium, a length of the opposing surface is shorter than a length of a detection surface.
Abstract:
A detecting device includes a detecting unit that detects an image on a medium transported in a transport path. The detecting unit includes a light emitter, a light receiver, and a light adjusting portion. The light emitter emits light toward the transport path in which the medium is transported. The light receiver receives reflected light of the light emitted from the light emitter. The light adjusting portion adjusts a quantity of light received by the light receiver according to a quantity of light emitted from the light emitter.
Abstract:
An exposure unit containment mechanism includes an exposure unit and a frame that defines a space into which the exposure unit is inserted, the exposure unit including: first protrusions protruding in left and right directions at a position spaced apart from a center of gravity of the exposure unit in a direction of insertion; and a second protrusion protruding in a downward direction, and the frame including: a guide member that contacts the first protrusions from above to limit upward movement of the first protrusions during insertion of the exposure unit; a first limiting member that limits movement of the second protrusion in left and right directions; a second limiting member that contacts the first protrusions from underneath to limit downward movement of the same; and a first pressing member that presses the first protrusions from above when the first protrusions are in contact with the second limiting member.
Abstract:
A light scanning device includes a mirror that is disposed in the light path of scan light emitted from a light source and changes the light path by reflecting the scan light. The light scanning device also includes a reinforcement member that is fixed to the mirror. The reinforcement member has a predetermined length in the light axis direction of the scan light such that the natural frequency of the mirror is set to be different from the vibrational frequency of the light scanning device.