Abstract:
Provided are a method and apparatus for encoding and decoding an audio signal. According to the present application, a signal of a high frequency band above a preset frequency band is adaptively encoded or decoded in the time domain or in the frequency domain by using a signal of a low frequency band below the preset frequency band. As such, the sound quality of a high frequency signal is not deteriorate even when an audio signal is encoded or decoded by using a small number of bits and thus coding efficiency may be maximized.
Abstract:
Disclosed are a context-based arithmetic encoding apparatus and method and a context-based arithmetic decoding apparatus and method. The context-based arithmetic decoding apparatus may determine a context of a current N-tuple to be decoded, determine a Most Significant Bit (MSB) context corresponding to an MSB symbol of the current N-tuple, and determine a probability model using the context of the N-tuple and the MSB context. Subsequently, the context-based arithmetic decoding apparatus may perform a decoding on an MSB based on the determined probability model, and perform a decoding on a Least Significant Bit (LSB) based on a bit depth of the LSB derived from a process of decoding on an escape code.
Abstract:
An apparatus and a method to encode and decode a speech signal using an encoding mode are provided. An encoding apparatus may select an encoding mode of a frame included in an input speech signal, and encode a frame having an unvoiced mode for an unvoiced speech as the selected encoding mode.
Abstract:
Provided are a multi-channel encoding and decoding method and apparatus capable of encoding and decoding residual signal by removing redundant information between a plurality of channels without a downmixed signal. In the method and apparatus, a reference signal which is to be used for encoding from a plurality of channel signals, the phase differences between the respective channel signals and the reference signal, gains which are the ratios of the amplitudes of the respective channel signals to the amplitude of the reference signal, and residual signals which correspond to differences between predicted signals and the actual channel signals, are encoded or decoded. The predicted signals are obtained by applying the phase differences and gains to the reference signal.
Abstract:
A multi-channel signal decoding method is provided. A down-mixed signal representative of a multi-channel signal is decoded, and parameters representing characteristic relations between channels of the multi-channel signal are decoded. An additional parameter is estimated by using the decoded parameters, and the decoded down-mixed signal is up-mixed by using the decoded parameters and the estimated parameter so as to decode the multi-channel signal.
Abstract:
Provided is a method and apparatus for multiplexing bitstreams that are coded to have different frame lengths using asynchronous time alignment, in which, based on the length of each frame of a bitstream selected as a reference bitstream from among bitstreams coded to have different frame lengths by a plurality of coders, the remaining bitstreams except for the reference bitstream are divided and multiplexed.
Abstract:
A method and apparatus to convert a linear predictive coding (LPC) coefficient into a coefficient having order characteristics, such as a line spectrum frequency (LSF), and to vector quantize the coefficient having the order characteristics when a speech signal is encoded. The method and apparatus split the vector of the coefficient having the order characteristics into a plurality of subvectors, select a codebook in which an available bit is variably allocated to each subvector according to distribution of elements of each subvector, and quantize each subvector according to the selected codebook. The method and apparatus use normalized codebooks.
Abstract:
A method and apparatus to encode and/or decode a speech signal and/or an audio signal. The apparatus includes a first domain transforming unit, a frequency domain encoding unit, and a multiplexing unit to encode the speech signal and/or an audio signal. The apparatus includes a demultiplexing unit, a frequency domain decoding unit, and a second domain inverse transformation unit to decode the speech signal and/or the audio signal. The method and apparatus are capable of effectively encoding or decoding all of a speech signal, an audio signal, and a mixed signal of a speech signal and an audio signal, and improving the quality of sound by using a small number of bits.
Abstract:
A method and apparatus to decode audio data constructed with a plurality of layers. An error concealment method of process a decoded bitstream selects one of a frequency domain and a time domain in order to conceal the errors, detects a position where the errors exist in a frame when the error concealment method in the frequency domain is selected, and conceals the errors only in a segment after the detected position.
Abstract:
A method and apparatus for performing coding and decoding for high-frequency bandwidth extension. The coding apparatus may down-sample an input signal, perform core coding on the down-sampled input signal, perform frequency transformation on the input signal, and perform bandwidth extension coding by using a base signal of the input signal in a frequency domain.