DIRECT REGRESSION ENCODER ARCHITECTURE AND TRAINING

    公开(公告)号:US20220121931A1

    公开(公告)日:2022-04-21

    申请号:US17384371

    申请日:2021-07-23

    Applicant: Adobe Inc.

    Abstract: Systems and methods train and apply a specialized encoder neural network for fast and accurate projection into the latent space of a Generative Adversarial Network (GAN). The specialized encoder neural network includes an input layer, a feature extraction layer, and a bottleneck layer positioned after the feature extraction layer. The projection process includes providing an input image to the encoder and producing, by the encoder, a latent space representation of the input image. Producing the latent space representation includes extracting a feature vector from the feature extraction layer, providing the feature vector to the bottleneck layer as input, and producing the latent space representation as output. The latent space representation produced by the encoder is provided as input to the GAN, which generates an output image based upon the latent space representation. The encoder is trained using specialized loss functions including a segmentation loss and a mean latent loss.

    Determining structure and functionality of scanned objects

    公开(公告)号:US10380317B2

    公开(公告)日:2019-08-13

    申请号:US15063183

    申请日:2016-03-07

    Applicant: Adobe Inc.

    Abstract: Methods and systems for generating digital models from objects. In particular, one or more embodiments determine a plurality of correspondences for first and second components of an object. One or more embodiments estimate a joint connecting the first and second components based on the correspondences. One or more embodiments jointly determine a global transformation and one or more joint parameters that map the plurality of components of the object from the first digital scan to the second digital scan. One or more embodiments also updating the correspondences based on the determined global transformation and parameter(s). One or more embodiments re-estimate the joint based on the updated correspondences. One or more embodiments select a candidate joint with a lowest error estimate from a plurality of candidate joints according to determined global transformations and joint parameter(s) for the candidate joints.

    Attribute conditioned image generation

    公开(公告)号:US11640684B2

    公开(公告)日:2023-05-02

    申请号:US16934858

    申请日:2020-07-21

    Abstract: A method, apparatus, and non-transitory computer readable medium for image processing are described. Embodiments of the method, apparatus, and non-transitory computer readable medium include identifying an original image including a plurality of semantic attributes, wherein each of the semantic attributes represents a complex set of features of the original image; identifying a target attribute value that indicates a change to a target attribute of the semantic attributes; computing a modified feature vector based on the target attribute value, wherein the modified feature vector incorporates the change to the target attribute while holding at least one preserved attribute of the semantic attributes substantially unchanged; and generating a modified image based on the modified feature vector, wherein the modified image includes the change to the target attribute and retains the at least one preserved attribute from the original image.

    SUPERVISED LEARNING TECHNIQUES FOR ENCODER TRAINING

    公开(公告)号:US20220121932A1

    公开(公告)日:2022-04-21

    申请号:US17384378

    申请日:2021-07-23

    Applicant: Adobe Inc.

    Abstract: Systems and methods train an encoder neural network for fast and accurate projection into the latent space of a Generative Adversarial Network (GAN). The encoder is trained by providing an input training image to the encoder and producing, by the encoder, a latent space representation of the input training image. The latent space representation is provided as input to the GAN to generate a generated training image. A latent code is sampled from a latent space associated with the GAN and the sampled latent code is provided as input to the GAN. The GAN generates a synthetic training image based on the sampled latent code. The sampled latent code is provided as input to the encoder to produce a synthetic training code. The encoder is updated by minimizing a loss between the generated training image and the input training image, and the synthetic training code and the sampled latent code.

Patent Agency Ranking