Abstract:
A thrust reverser with grids includes a jet engine pylon, a one piece cowl either directly or indirectly slidably mounted on the jet engine pylon between a direct jet position and a reverse jet position, and a system for locking this cowl on a beam. The system has a single tertiary lock, which is positioned on one side of the jet engine pylon being capable of locking a corresponding upper edge of the cowl. In addition, the tertiary lock includes a locker to lock the cowl, a blocker for blocking the locker, and a position detector in order to detect the position of the locker. The system further includes another detector to detect proper closing of the other upper edge of the cowl.
Abstract:
A de-icing device is provided that includes a piccolo tube integrated with a front bulkhead for limiting an inner volume of a perforated front lip. The piccolo tube is in contact with a noise reduction cellular structure provided with perforations and hot air circulation channels delivered by the piccolo tube, the de-icing hot air being diffused through the perforations and channels of the cellular structure, on the perforations facing the front lip.
Abstract:
A method for controlling a position of a variable nozzle of an aircraft includes the following steps: setting the variable nozzle in a position P(t0) at a time t0 as a preliminary step; step A in which at each instant ti with 1
Abstract:
The present disclosure relates to a nacelle for a dual-flow turbojet engine includes a cold airstream having a non-constant cross-section over the periphery of the nacelle, such that at least one flap is radially offset with respect to the central axis of the turbojet engine, relative to the adjacent flaps. The system for driving the radially offset flaps is suitable for ensuring that the kinematics of the flaps are offset relative to the kinematics of the flaps mounted along the remainder of the periphery of the airstream.
Abstract:
The present disclosure relates to a turbojet engine nacelle equipped with at least one thrust reverser. The thrust reverser includes: two half-cowls forming an outer cowl which is articulated on hinges and translates between closed and open positions, a first actuator to translationally actuate a downstream frame, a second actuator to rotationally actuate each half-cowl, and a lock capable of locking or unlocking the half-cowls relative to one another. In particular, the thrust reverser includes cascades vanes supported at their upstream end by an upstream frame and at their downstream end by the downstream frame, and a connector between the downstream frame and the external cowl. The cascade vanes are enclosed in a shroud formed by a fan casing and a fan cowl.
Abstract:
A turbojet engine nacelle has a thrust reverser device and an actuating system for said thrust reverser device, and the thrust reverser device includes a moving cowl mounted translatably alternating between a closed position and an open position, and a jet nozzle section for gases that extends the moving cowl. In particular, the jet nozzle section includes a nozzle flap mounted movable between a closed position and an open position in which the nozzle flap opens a leakage passage toward the outside of the nozzle section. The actuating system has an actuator shared with the moving cowl and the nozzle flap to activate the translational movement of the moving cowl and to pivot the nozzle flap between three following positions: an idle position, an open position of the nozzle flap and an open position of the moving cowl.
Abstract:
A thrust reverser with grids includes a jet engine pylon, a one piece cowl either directly or indirectly slidably mounted on the jet engine pylon between a direct jet position and a reverse jet position, and a system for locking this cowl on a beam. The system has a single tertiary lock, which is positioned on one side of the jet engine pylon being capable of locking a corresponding upper edge of the cowl. In addition, the tertiary lock includes a locker to lock the cowl, a blocker for blocking the locker, and a position detector in order to detect the position of the locker. The system further includes another detector to detect proper closing of the other upper edge of the cowl.
Abstract:
The present disclosure relates to a propulsion unit for an aircraft including a nacelle which surrounds a turbojet engine. The nacelle has an inner structure surrounding a downstream compartment of the turbojet engine, and the inner structure includes two annular half-portions. The propulsion unit also includes a rail/guide unit and to move the annular half-portions between a working position and a maintenance position. In particular, the rail/guide unit radially moves away the annular half-portions relative to a longitudinal axis of the nacelle, during a translation movement of the annular half-portions. The nacelle is provided with a connecting rod which is connected to the annular half-portions and to the turbojet engine and so that the connecting rod contributes to rotate the annular half-portions about the rail.
Abstract:
A thrust reverser for a turbojet engine nacelle includes movable cowls which move backward relative to a front frame under the action of an actuation system, thereby making flaps tilt, via a control mechanism, so as to substantially close the annular cold air flow path, and by opening cascades disposed around this flow path and which receive the cold air flow and return it forward. When the thrust reverser is closed, the cascades are partially integrated in the cowls, and the thrust reverser includes an actuation system which makes the cascades move backward along a stroke which is shorter than the stroke of the cowl.
Abstract:
A thrust reverser device for an aircraft turbojet engine includes: a movable cowl, translating cascades connected to the movable cowl, a mast; and a front suspension to suspend the turbojet engine. The cascades translates between a direct jet position where the cascades are retracted in a fan casing, and an indirect jet position where the cascades are brought out of the fan casing. In particular, the cascades have a sliding connection with the mast by means of at least one spacer connected to the mast downstream of the front suspension.