Abstract:
A finger biometric sensing device may include drive circuitry capable of generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and capable of generating a detected signal based upon placement of a finger adjacent the array of finger biometric sensing pixel electrodes. The detected signal may include a relatively large drive signal component and a relatively small sense signal component superimposed thereon. The finger biometric sensing device may also include a gain stage coupled to the array of finger biometric sensing pixel electrodes, and drive signal nulling circuitry coupled to the gain stage capable of reducing the relatively large drive signal component from the detected signal.
Abstract:
An electronic device may include a finger biometric sensor, a display, and a processor coupled to the finger biometric sensor and the display. The processor may be switchable between a user-interface locked mode and a user-interface unlocked mode. The processor may be capable of determining a pattern of input motions on the finger biometric sensor and displaying an image on the display corresponding to the pattern of input motions. The processor may also be capable of switching between the user-interface locked mode and the user-interface unlocked mode when the pattern of input motions matches a stored pattern representing a user unlock code.
Abstract:
A biometric finger sensor may include an array of biometric finger sensing pixels and an array shielding electrode outside the array of biometric finger sensing pixels. The biometric finger sensor may further include a finger drive electrode outside the array shielding electrode. Finger drive circuitry may generate a finger drive signal for the finger drive electrode and generate a compensating finger drive signal for the shielding electrode.
Abstract:
An electronic device may include a dielectric cover layer defining a finger sensing surface and at least one optical image sensor below the dielectric cover layer. The electronic device may also include at least one optical element associated with the at least one optical image sensor. Light sources may be below the dielectric layer and may be selectively operable in subsets of light sources. A controller may be configured to sequentially operate respective adjacent subsets of light sources while acquiring biometric image data from the at least one optical image sensor.
Abstract:
An electronic device may include a dielectric cover layer defining a finger sensing surface and at least one optical image sensor below the dielectric cover layer. The electronic device may also include at least one optical element associated with the at least one optical image sensor. Light sources may be below the dielectric layer and may be selectively operable in subsets of light sources. A controller may be configured to sequentially operate respective adjacent subsets of light sources while acquiring biometric image data from the at least one optical image sensor.
Abstract:
A finger biometric sensor may include a lower conductive layer, an upper conductive layer, and a spacer between the lower and upper conductive layers to define an air gap therebetween. The finger biometric sensor may also include a finger biometric sensing integrated circuit (IC) above the upper conductive layer and capable of deflecting the upper conductive layer toward the lower conductive layer to change a capacitance thereof based upon pressure applied to the finger biometric sensing IC. A pressure sensing circuit may be coupled to the lower and upper conductive layers to sense the change in capacitance.
Abstract:
An electronic device may include a touch display that includes at least one display layer, and at least one transparent conductive layer thereon defining touch sensing pixels. The electronic device may also include a finger biometric sensor carried by the touch display and that may include an interconnect layer that includes transparent conductive traces, and a finger biometric sensing layer adjacent the interconnect layer and that includes an array of transparent conductive finger biometric sensing pixels capacitively coupled to the at least one transparent conductive layer of the touch display. The finger biometric sensor may also include a transparent dielectric layer between the interconnect layer and the finger biometric sensing layer, and transparent conductive vias extending through the transparent dielectric layer and coupling the array of transparent conductive finger biometric sensing pixels to respective ones of the transparent conductive traces.
Abstract:
An electronic device may include a housing and circuitry carried by the housing and having a device ground associated therewith. The electronic device may also include an array of biometric finger sensing pixel electrodes and an array shielding electrode outside the array of biometric finger sensing pixels. A finger coupling electrode may be outside the array shielding electrode and coupled to the device ground. The electronic device may also include drive circuitry capable of generating a drive signal for the array of biometric finger sensing pixel electrodes and a compensating drive signal for the array shielding electrode.
Abstract:
An electronic device may include a finger biometric sensor, a display, and a processor coupled to the finger biometric sensor and the display. The processor may be switchable between a user-interface locked mode and a user-interface unlocked mode. The processor may be capable of determining a pattern of input motions on the finger biometric sensor and displaying an image on the display corresponding to the pattern of input motions. The processor may also be capable of switching between the user-interface locked mode and the user-interface unlocked mode when the pattern of input motions matches a stored pattern representing a user unlock code.
Abstract:
A finger biometric sensor may include a dielectric layer having a front surface capable of receiving a user's finger thereon and at least one light source capable of injecting light into the user's finger. The finger biometric sensor may also include image sensors adjacent a back surface of the dielectric layer defining overlapping target areas directed toward the user's finger, and a controller capable of collecting image data from the image sensors based upon diffuse scattering and specular reflections from the user's finger, and generating fingerprint ridge three-dimensional (3D) data.