Abstract:
A touch sensor may overlap a display. A transparent shield layer that is grounded around its edges may be interposed between the display and the touch sensor to help prevent noise from display data lines from reaching the touch sensor. The data lines may extend along a first dimension. The touch sensor may have first elongated electrodes that extend along the first dimension and second elongated electrodes that extend along a second dimension that is perpendicular to the first dimension. The second electrodes may be interposed between the first electrodes and the data lines. Pen present electrodes may be used to gather pen present data associated with a stylus on the touch sensor. Adjacent noise sensors may collect noise data that is removed from the pen present data.
Abstract:
An algorithm for reducing stylus tip wobble for a stylus translating on a surface over and between electrodes of a touch sensor panel is disclosed. In some examples, a first position estimate can be calculated using a first position calculation method and a second position estimate can be calculated using a second position calculation method. The position of the stylus can be determined based on a weighted combination of the first and second position estimates. In some examples, the first position estimate can be calculated using an even-point centroid of signal contributions from an even number of electrodes of a touch sensor panel and the second position estimate can be calculated using an odd-point centroid of signal contributions from an odd number of electrodes. In some examples, the weighting can be assigned based on a ratio of the two largest amplitude signals and based on a ratio of the second and third largest amplitude signals.
Abstract:
Improved sensing can include modified sampling and/or processing to improve performance against noise due to environmental variations and interference. In some examples, improved interference rejection can be achieved by sampling a sensor multiple times during settled periods. In some examples, the excitation signal and sampling window can be dynamically adjusted to satisfy drift and/or interference specifications based on various operating conditions or the operating environment. In some examples, drift performance can be traded off to improve interference performance. In some examples, improved immunity to environmental variations can be achieved by equalizing sensor outputs in accordance with characterization of the sensing system. In some examples, improved performance can be achieved by sampling the sensor continuously and using an optimized window function to improve performance against noise.
Abstract:
Position-based sensing methods and systems can be used to transmit data from an input device to a touch-sensitive device. For example, the touch sensing system may perform one or more coarse input device sub-scans to determine a coarse location of the input device. The coarse location can be used to select one or more touch sensors (or sensor channels) to sample for decoding data encoded in the stimulation signals from the input device. During one or more fine input device sub-scans, the touch sensing system can determine a fine location of the input device and decode the data from the input device sampled from the selected touch sensors (or sensor channels).
Abstract:
Electrode configurations for reducing wobble error for a stylus translating on a surface over and between electrodes of a touch sensor panel is disclosed. In some examples, electrodes associated with a more linear signal profile are correlated with lower wobble error. In some examples, electrodes are coupled to adjacent electrodes via diffusing resistors such that the signal profile for each electrode is spread to be more linear. In some configurations, the value of the diffusing resistors and series resistance associated with an electrode is selected based on a desired signal profile for that electrode. In some examples, the series resistance can include a trace resistance and a compensating resistance. The compensating resistance can compensate for a variance in trace resistance between electrodes, thus making series resistance substantially equal for each of the electrodes.