Abstract:
Under conventional techniques, wastewater treatment has many problems such as poor production conditions, serious random interference, strong nonlinear behavior, large time-varying, and serious lagging. These problems cause difficulty in detecting wastewater treatment parameters such as biochemical oxygen demand (BOD) values that are used to monitor water quality. To solve problems associated with monitoring BOD values in real-time, the present disclosure utilizes a self-organizing recurrent RBF neural network designed for intelligent detecting of BOD values. Implementations of the present disclosure build a computing model of BOD values based on the self-organizing recurrent RBF neural network to achieve real-time and more accurate detection of the BOD values (e.g., a BOD concentration). The implementations herein quickly and accurately obtain BOD concentrations and improve the quality and efficiency of wastewater treatment.
Abstract:
In various implementations, methods and systems are designed for predicting effluent total phosphorus (TP) concentrations in an urban wastewater treatment process (WWTP). To improve the efficiency of TP prediction, a particle swarm optimization self-organizing radial basis function (PSO-SORBF) neural network may be established. Implementations may adjust structures and parameters associated with the neural network to train the neural network. The implementations may predict the effluent TP concentrations with reasonable accuracy and allow timely measurement of the effluent TP concentrations. The implementations may further collect online information related to the estimated effluent TP concentrations. This may improve the quality of monitoring processes and enhance management of WWTP.
Abstract:
In various implementations, methods and systems are designed for predicting effluent total phosphorus (TP) concentrations in an urban wastewater treatment process (WWTP). To improve efficiency of TP prediction, a particle swarm optimization self-organizing radial basis function (PSO-SORBF) neural network may be established. Implementations may adjust structures and parameters associated with the neural network to train the neural network. The implementations may predict the effluent TP concentrations with reasonably accuracy and allow timely measurement of the effluent TP concentrations. The implementations may further collect online information related to the estimated effluent TP concentrations. This may improve the quality of monitoring processes and enhance management of WWTP.
Abstract:
A multi-time scale model predictive control method for wastewater treatment process is designed to control the dissolved oxygen concentration and nitrate nitrogen concentration in different time scales to ensure that the effluent quality meets the standard. In view of the difference of time scales in wastewater treatment process caused by different sampling periods of dissolved oxygen concentration and nitrate nitrogen concentration, prediction models with different time scales are firstly designed to unify the prediction outputs to the fast time scale. Then, the gradient descent algorithm is used to solve the optimal solution with fast time scale to control the wastewater treatment system. It not only conforms to the operation characteristics of wastewater treatment process, but also solves the problem of poor operation performance of multiobjective model predictive control caused by different time scales. The experimental results show that the multi-time scale model predictive control method can achieve accurate on-line control of dissolved oxygen concentration and nitrate nitrogen concentration with fast time scales.
Abstract:
An intelligent detection system of effluent total nitrogen (TN) based on fuzzy transfer learning algorithm belongs to the field of intelligent detection technology. To detect the TN concentration, the artificial neural network can be used to model wastewater treatment process due to the nonlinear approximation ability and learning ability. However, wastewater treatment process has the characteristic of time-varying dynamics and external disturbance, artificial neural network prediction method cannot acquire sufficient data to ensure the accuracy of TN prediction, and data loss and data deficiency will make the prediction model invalid. The invention proposed an intelligent detection system of effluent total nitrogen based on fuzzy transfer learning algorithm; the proposed system contains several functional modules, including detection instrument, data acquisition, data storage and TN prediction. For the TN prediction module, the fuzzy transfer learning algorithm build the fuzzy neural network based intelligent prediction model, which the parameters are adjusted by the transfer learning method.
Abstract:
The wastewater treatment process by using activated sludge process often appear the sludge bulking fault phenomenon. Due to production conditions of wastewater treatment process, the correlation and restriction between variables, the characteristics of nonlinear and time-varying, which lead to hard identification of sludge bulking; Sludge bulking is not easy to detect and the reasons resulting in the sludge bulking are difficult to identify, are current RBF neural network is designed for detecting and identifying the causes of sludge volume index (SVI) in this patent. The method builds soft-computing model of SVI based on recurrent RBF neural network, it has been completed to the real-time prediction of SVI concentration and better accuracy were obtained. Once the fault of sludge bulking is detected, the identifying cause variables (CVI) algorithm can find the cause variables of sludge bulking. The method can effectively identify the fault of sludge bulking and ensure the safety operation of the wastewater treatment process.
Abstract:
In this present disclosure, a computing implemented method is designed for predicting the effluent total nitrogen concentration (TN) in an urban wastewater treatment process (WWTP). The technology of this present disclosure is part of advanced manufacturing technology and belongs to both the field of control engineer and environment engineer. To improve the predicting efficiency, a recurrent self-organizing radial basis function (RBF) neural network (RSORBFNN) can adjust the structure and parameters simultaneously. This RSORBFNN is developed to implement this method, and then the proposed RSORBFNN-based method can predict the effluent TN concentration with acceptable accuracy. Moreover, online information of effluent TN concentration may be predicted by this computing implemented method to enhance the quality monitoring level to alleviate the current situation of wastewater and to strengthen the management of WWTP.
Abstract:
A computing system is designed for measuring the A2/O effluent total phosphorus based on data-driven method. Several related variables are obtained by analyzing the relationship between effluent total phosphorus and other process variables. In addition, a hardware platform is designed and built to further analysis sample information of each variable. Finally, the computing system for measuring total phosphorus in effluent is developed by combining the hardware and software as provided in implementations herein.