Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret and session keys for the secure session. The different server decrypts the encrypted premaster secret, generates the master secret, and generates session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server and transmits those session keys to that server.
Abstract:
A first server receives a set of cryptographic parameters from a second server. The set of cryptographic parameters is received from the second server as part of a secure session establishment between a client device and the second server. The first server accesses a private key that is not stored on the second server. The first server signs the set of cryptographic parameters using the private key. The first server transmits the signed set of cryptographic parameters to the second server. The first server receives, from the second server, a request to generate a premaster secret using a value generated by the second server that is included in the request and generates the premaster secret. The first server transmits the premaster secret to the second server for use in the secure session establishment between the client device and the second server.
Abstract:
A server receives a request from a client to establish a secure session. The server analyzes the request to determine a set of one or more properties of the request. The server selects, based at least in part on the determined set of properties, one of multiple certificates for a hostname of the server, where each of the certificates is signed using a different signature and hash algorithm pair. The server returns the selected certificate to the client.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to another server for decryption. The server receives the decrypted premaster secret and continues with the handshake procedure including generating a master secret from the decrypted premaster secret and generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server proxies messages to/from the different server including a set of signed cryptographic parameters signed using the private key on the different server. The different server generates the master secret, and generates and transmits the session keys to the server that are to be used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret. The different server decrypts the encrypted premaster secret, generates the master secret, and transmits the master secret to the server. The server receives the master secret and continues with the handshake procedure including generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret and session keys for the secure session. The different server decrypts the encrypted premaster secret, generates the master secret, and generates session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server and transmits those session keys to that server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake is stored in a different server. An encrypted connection is established between the first server and the second server. A message is received from the client device that initiates a procedure to establish the secure session between the client device and the first server. As part of this procedure, the first server transmits over the encrypted connection a request to the second server to use the private key. The first server receives, over the encrypted connection, a response to the request that includes a result of the use of the private key. The first server uses the result during the procedure to establish the secure session.
Abstract:
A first server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different, second, server. The first server transmits messages between the client device and the second server where the second server has access to a private key that is not available on the first server. The first server receives from the second server a set of session key(s) used in the secure session for encrypting/decrypting communication between the client device and the first server. The session key(s) are generated using a master secret that is generated using a premaster secret generated using Diffie-Hellman public values selected by the client device and the second server. The first server uses the session key(s) to encrypt/decrypt communication with the client device.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret. The different server decrypts the encrypted premaster secret, generates the master secret, and transmits the master secret to the server. The server receives the master secret and continues with the handshake procedure including generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.