Abstract:
A method and system for determining an alignment error between sensors mounted to a machine is disclosed. The method may include calculating a first orientation value based on a signal received from a first sensor. The method may further include calculating a second orientation value based on a signal received from a second sensor. The method may further include calculating an alignment error between the first sensor and the second sensor based on a difference between the first orientation value and the second orientation value.
Abstract:
A machine navigation system and method for estimating velocity of a machine is disclosed. The method may include receiving, from an odometer, a first signal indicative of a distance traveled by the machine and calculating a scale factor to compensate for an error associated with the first signal. The method may further include determining whether a second signal indicative of a location of the machine is received by the machine and selectively adjusting the scale factor using machine parameters to generate an adjusted scale factor, where selectively adjusting may be performed based on whether the second signal is received by the machine. The method may further include estimating the velocity of the machine based on the first signal and the adjusted scale factor.
Abstract:
A light detection and ranging (LIDAR) controller is disclosed. The LIDAR controller may receive cycle segment information identifying a cycle segment of an operation of a machine. The LIDAR controller may determine, based on the cycle segment information, a scan area within a field of view of the LIDAR sensor. The LIDAR controller may cause the LIDAR sensor to capture, with an increased point density relative to a non-scan area within the field of view, LIDAR data associated with the scan area. The LIDAR controller may process the LIDAR data to determine, using the increased point density, a status associated with the operation. The LIDAR controller may perform an action associated with indicating the status associated with the operation.
Abstract:
A motion determination system is disclosed. The system may calculate one or more visual-odometry outputs. The system may determine a plurality of figure of merits, wherein each of the plurality of figure of merits is associated with one of a plurality of parameters affecting the calculation of the one or more visual-odometry outputs, and each of the plurality of figure of merits is indicative of an accuracy of the visual-odometry outputs. The system may calculate a combined figure of merit based on the plurality of figure of merits. The system may calculate an error estimate for the one or more visual-odometry outputs based on the combined figure of merit.
Abstract:
A motion determination system is disclosed. The system may receive a first camera image and a second camera image. The system may receive a first range image corresponding to the first camera image. The system may generate a first range map by fusing the first camera image and the first range image. The system may iteratively process a plurality of first features in the first range map to determine a change in position of the machine. The plurality of second features may correspond to the plurality of first features, and each of the plurality of first and second features is denoted by feature points in an image space of the camera.
Abstract:
A method, system, and non-transitory computer-readable storage medium for calibrating an implement actuation sensor of a machine are disclosed. The method may include calculating a first elevation value of an implement of the machine in a gravity reference frame of the machine. The method may further include calculating a second elevation value of a ground-engaging device of the machine in the gravity reference frame of the machine. The method may further include determining a difference between the first elevation value and the second elevation value. The method may further include calibrating the implement actuation sensor based on the determined difference.
Abstract:
A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.