摘要:
A thin film transistor (TFT) array substrate including a substrate, a plurality of scan lines disposed on the substrate, a plurality of data lines disposed on the substrate, and a plurality of pixels arranged in array on the substrate is provided. Each scan line is connected to a row of pixels. Each pixel includes a TFT and a pixel electrode, wherein the pixel electrode is connected to one of the scan lines and one of the data lines through the TFT. In the same column of pixels, the TFTs are connected to two adjacent data lines alternatively and aligned in the column direction. At least one of the pixels further includes a capacitance compensating line. In the pixel having the capacitance compensating line, the TFT is connected to one of the adjacent two data lines, and the capacitance compensating line is connected to the other one.
摘要:
A liquid crystal display (LCD) including a backlight module and a liquid crystal display panel is provided. The backlight module has at least one white light source. BL1 and BL2 respectively represent maximum brightness peaks of a normalized emission spectrum of the backlight module at a wavelength between 500 nm to 520 nm and between 445 nm to 465 nm, in which 0.91≦BL1/BL2≦0.99. The liquid crystal display panel is disposed above the backlight module, and has a plurality of substrates and one liquid crystal layer located between them. One of substrates has a red filter layer, a green filter layer, and a blue filter layer, and the coordinate values of the red filter layer, the green filter layer, and the blue filter layer in CIE 1931 chromaticity diagram satisfy predetermined relation expressions.
摘要:
A liquid crystal display (LCD) including a backlight module and a liquid crystal display panel is provided. The backlight module has at least one white light source. BL1 and BL2 respectively represent maximum brightness peaks of a normalized emission spectrum of the backlight module at a wavelength between 500 nm to 520 nm and between 445 nm to 465 nm, in which 0.91≦BL1/BL2≦0.99. The liquid crystal display panel is disposed above the backlight module, and has a plurality of substrates and one liquid crystal layer located between them. One of substrates has a red filter layer, a green filter layer, and a blue filter layer, and the coordinate values of the red filter layer, the green filter layer, and the blue filter layer in CIE 1931 chromaticity diagram satisfy predetermined relation expressions.
摘要:
An liquid crystal display including a backlight module and an LCD panel is disclosed. The backlight module has a white light source, and the normalized optical spectrum of the backlight module is BL(λ) The LCD panel includes a red color filter layer, a green color filter layer and a blue color filter layer. The green color filter layer and the backlight module are subject to the following relationship: E=C/D and E≧0.8, wherein A is defined as the wavelength corresponding to the maximum peak value of CFGreen(λ)×BL(λ)×x(λ); B is defined as the wavelength corresponding to the maximum peak value of CFGreen(λ)×BL(λ)×y(λ); C is defined as the integral on CFGreen(λ)×BL(λ)×x(λ) over the interval between A and B; D is defined as the integral on CFGreen(λ)×BL(λ)×y(λ) over the interval larger than B, CFGreen(λ) is the transmission spectrum of the green color filter layer; and x(λ) and y(λ) are color matching functions.
摘要:
An liquid crystal display including a backlight module and an LCD panel is disclosed. The backlight module has a white light source, and the normalized optical spectrum of the backlight module is BL(λ). The LCD panel includes a red color filter layer, a green color filter layer and a blue color filter layer. The green color filter layer and the backlight module are subject to the following relationship: E=C/D and E≧0.8, wherein A is defined as the wavelength corresponding to the maximum peak value of CFGreen(λ)×BL(λ)×x(λ); B is defined as the wavelength corresponding to the maximum peak value of CFGreen(λ)×BL(λ)×y(λ); C is defined as the integral on CFGreen(λ)×BL(λ)×x(λ) over the interval between A and B; D is defined as the integral on CFGreen(λ)×BL(λ)×y(λ) over the interval larger than B, CFGreen(λ) is the transmission spectrum of the green color filter layer; and x(λ) and y(λ) are color matching functions.