Abstract:
A cable connector includes an insulative housing, some terminals, an insert and a shield. The insulative housing includes a main body, a pair of side arms respectively rearward extending from the middle of the two sides of the main body to form a receiving space between the two side arms. The forward section of said main body is a mating portion with some evenly disposed grooves. The rearward section of said main body is a connecting portion with some troughs corresponding to the grooves. Each side arm includes two pair of separated receiving slots on the tail thereof to be connected to the receiving space. Each of terminals includes a mating piece on the forward part thereof to be received in the mating portion and a connecting piece on the rearward part thereof to be received in the connecting portion. The insert includes a main body with a grid to form some passages corresponding to the troughs of the housing and two pair of fastening portions respectively extending from two sides of the main body. The main body of insert is received in the receiving space between the two side arms of the housing through said fastening portions being inserted into the receiving slots of the housing. The shield includes an upper cover assembled on the upper surface of the housing to cover the connecting portion and the insert, and a lower cover assembled on the lower surface of the housing to cover the connecting portion and the insert.
Abstract:
A cable connector includes an insulative housing, some terminals, an insert and a shield. The insulative housing includes a main body, a pair of side arms respectively rearward extending from the middle of the two sides of the main body to form a receiving space between the two side arms. The forward section of said main body is a mating portion with some evenly disposed grooves. The rearward section of said main body is a connecting portion with some troughs corresponding to the grooves. Each side arm includes two pair of separated receiving slots on the tail thereof to be connected to the receiving space. Each of terminals includes a mating piece on the forward part thereof to be received in the mating portion and a connecting piece on the rearward part thereof to be received in the connecting portion. The insert includes a main body with a grid to form some passages corresponding to the troughs of the housing and two pair of fastening portions respectively extending from two sides of the main body. The main body of insert is received in the receiving space between the two side arms of the housing through said fastening portions being inserted into the receiving slots of the housing. The shield includes an upper cover assembled on the upper surface of the housing to cover the connecting portion and the insert, and a lower cover assembled on the lower surface of the housing to cover the connecting portion and the insert.
Abstract:
An FFC connector according to the present invention includes a FFC (1) and an insulator (3). The FFC defines upper and lower surfaces (10) and (11) opposite to each other, a number of gold fingers (101) formed with the upper surface and exposed outside to contact with a complementary connector, and a reinforcement plate (4) held on the lower surface and supporting the gold fingers during mating with the complementary connector. The insulator abuts against the upper surface of the FFC and has a receiving room (310) for receiving the FFC.
Abstract:
An electrical connector comprises an insulative housing (1), a contact set (2) assembled into the housing, a shield (3) enclosing the housing, and a pair of latch devices (4) assembled to the housing. The housing comprises a base portion (11), a plurality of passageways (111) defined in the base portion, a pair of retention portions (14) at a pair of ends thereof. The contact set comprises an insulative insert (21), a plurality of signal and grounding contacts (22) received in the insert, and a grounding bar (23) assembled in the insert. The signal and grounding contacts extend into the passageways. The pair of latch devices is assembled to the retention portions and each latch device comprises a latch portion (414) extending through a passageway (148) defined in a guide posts (145) of the housing. Each latch device has a tab (419) engaging with the housing.
Abstract:
An electrical connector (1) comprises an insulative housing (12), a latch member (20) and an actuator member (30) integrally formed on a top face (15) of the housing. The housing defines a plurality of cavities (14) for receiving a plurality of terminals therein. The latch member has a deflectable portion in spaced relationship to the top face for latching and detaching a complementary connector. The actuator member is located above the latch member. The actuator member has a pair of arced ribs (32) extending from the top face, an anti-overstress bar (34) connected between the arced ribs for limiting deflection of the deflectable portion of the latch member relative to the top face of the insulative housing, and a handle (36) extending from the anti-overstress bar. When the handle is depressed, the anti-overstress bar depresses the deflectable portion of the latch member to cause the deflectable portion to move downwardly, whereby an engagement between the deflectable portion and a complementary connector is released.
Abstract:
A micro coaxial cable connector comprises a dielectric housing (40), a metal shield (10) enclosing the housing, a grounding plate (30) and a terminal block (20) received in the housing. The housing has a transverse portion (411) and a pair of lateral portions (413) extending rearwardly from a pair of lateral sides of the transverse portion. Side sections (418) of the housing serve as handles to allow a user to firmly grasp the connector when plugging and unplugging the connector with a mating connector. Each lateral portion further defines a split (419). The metal shield has an upper flap (11), a lower flap (12) and a pair of side flaps (14) upwardly extending from opposite side edges of the lower flap. The pair of side flaps extend into the splits of the housing to ensure contact between a grounding tab (123) of the shield and a grounding beam (33) of the grounding plate.
Abstract:
A connector assembly (1) mounted on a printed circuit board for mating with the network cable includes a housing (11) configured to two mating ports (10) to receive their complementary connector. A conditioning unit (3) is installed into the housing (11) and disposed between these mating ports (10), and includes a circuit board (30) having conditioning components (31) and two terminal modules (32) surface mounted thereon. A pair of flexible latching portions (14) is formed on two side edges of the rear side of the housing (11) respectively. And a stopping portion (16) is formed underneath every latching portion (14) and extending a predetermined distance longer than the length of the latching portion. A notch (37) is formed at one edge of the circuit board (30) to be engaged with the latch (14) to fix the conditioning unit (3) in position. The latching portion (14) is easily detached from the notch (37) of the circuit board (30) by a tool to simply any rework or repair process while the stopping portion (16) will restrict and protect the flexible latching portion (14) from being overstressed or over-bending.
Abstract:
A cable end connector includes a dielectric housing (10), a terminal (30) received in the housing, a shell (50) shielding the housing, and a cover (60) attached to the shell for holding a coaxial cable (70) therein. The housing includes a tubular portion (20) and a base portion (40) engaged with the tubular portion. The shell has a trunk portion (51) and an inner periphery of the trunk portion interferentially engages with the tubular portion. The trunk portion has a pair of converging free portions (516) in a upper portion thereof and a pair of arms (513) rearwardly extending from a lower portion thereof, a shoulder (517) formed on each arm has a determined distance to the corresponding free portion. The cover attaches to the shoulders to hold a coaxial cable therein and interferes against the free portions.
Abstract:
A cable end connector includes a dielectric housing (10), a terminal (30) received in the housing, a shell (50) shielding the housing, and a retainer (60) attached to the shell for holding a coaxial cable (70) therein. The housing includes a tubular portion (20) and a base portion (40). The terminal has a mating portion (33), and a tail portion (31) perpendicular to the mating portion. The shell comprises a planar portion (53) supporting the housing, and a trunk portion (51) bendably connected to the planar portion and enclosing the tubular portion of the housing. The retainer has a braiding crimp (65) at an end thereof extending rearwardly beyond arms (513) of the trunk portion, for grounding a braiding layer (75) of the coaxial cable.