Abstract:
A system and method for controlling an adjustable speed drive (ASD) to decelerate an AC load during a generating mode of operation is disclosed. The ASD includes a capacitor and an inverter coupled to a DC link. A current sensor system is coupled to an output of the inverter. The ASD further includes a control system programmed to calculate an energy of the capacitor, generate a reference power using the calculated capacitor energy, and calculate a feedback power from realtime current signals received from the current sensor system. The control system compares the feedback power to the reference power, defines a frequency offset based on the comparison, generates a speed command using the frequency offset, and outputs the speed command to the inverter to maintain a smooth DC link voltage during deceleration.
Abstract:
A motor control system for selectively controlling power from a power source to a load is provided. The motor control system includes at least one PCB structure and a plurality of protection and control components mounted onto the at least one PCB structure so as to be electrically coupled therewith. The plurality of protection and control components includes a power converter operable to provide a controlled output power to the load, a plurality of switching devices operable to selectively control power flow from the power source into the power converter and to bypass the power converter, and one or more protection devices configured to selectively interrupt current flow from the power source to the power converter during a fault condition. The motor control system also includes a housing enclosing the at least one PCB structure and the plurality of protection and control components.
Abstract:
A power conversion circuit having a solid-state circuit breaker integrated therein is disclosed. With a disconnect switch between a utility source and the power conversion apparatus described for meeting UL489, the power conversion circuit includes an input connectable to an AC source, a rectifier circuit connected to the input to convert an AC power input to a DC power, and a DC link coupled to the rectifier circuit to receive the DC power therefrom. The rectifier circuit comprises a plurality of phase legs each including thereon an upper switching unit and a lower switching unit, wherein at least one of the upper and lower switching units on each phase leg comprises a bi-directional switching unit that selectively controls current and withstands voltage in both directions, so as to provide a circuit breaking capability that selectively interrupts current flow through the rectifier circuit, while maintaining original power conversion functionalities.
Abstract:
A power converter for operating a three-phase AC electrical machine from a single phase AC power source includes an ASD having a rectifier and inverter, and an add-on power conversion module external to the ASD that is electrically connected to each of the power source and the ASD. The power conversion module includes one or more input inductors configured to store and filter single-phase AC power received from the power source and a pair of switching devices connected to each of the input inductors at an output end thereof. A controller operably connected to the power conversion module selectively controls switching of the pair of switching devices associated with each of the one or more input inductors so as to cause a sinusoidal single phase AC power to be output from the add-on power conversion module for rectification by the rectifier.
Abstract:
A system and method for capturing current information for a power converter is disclosed. The current monitoring system includes a control system operably connected to a circuit having a plurality of semiconductor switches that are controllable to convert an input power to an output power having a desired voltage and current. The control system includes a PWM signal generator to generate switching signals that control switching of the switches, gate drivers to facilitate switching of the switches, and desaturation circuits to provide overcurrent protection to the switches. The control system further includes a processor that receives voltage data from the desaturation circuits regarding a measured voltage across each of the switches, determines a current through each of the switches based on the voltage across each respective switch, and calculates an input current to the circuit or an output current of the circuit based on the determined currents through the switches.
Abstract:
A variable frequency drive (VFD) circuit includes an input connectable to an AC source, a rectifier to convert an AC power input to a DC power, a DC link to receive DC power from the rectifier and having a DC link voltage thereon, a DC link capacitor bank with one or more capacitors connected to the DC link, and a pre-charge circuit coupled to the DC link capacitor. The pre-charge circuit further includes one or more resistors, one or more pre-charge relays each operable in on and off states to selectively control a current flow through the resistor(s) so as to control an initial pre-charge of the DC link capacitor, and an overvoltage relay operable in on and off states to selectively cut-off a current flow to the DC link capacitor bank, so as to prevent an overvoltage condition in the DC link capacitor bank.
Abstract translation:变频驱动(VFD)电路包括可连接到AC电源的输入端,将AC电源输入转换为DC电力的整流器,DC链路以从整流器接收DC电力并且具有DC链路电压; DC 链路电容器组与连接到DC链路的一个或多个电容器以及耦合到DC链路电容器的预充电电路。 预充电电路还包括一个或多个电阻器,一个或多个预充电继电器,每个可工作在导通和截止状态,以选择性地控制通过电阻器的电流,以便控制DC的初始预充电 连接电容器和可操作于导通和截止状态的过电压继电器,以选择性地截断到DC链路电容器组的电流,以便防止DC链路电容器组中的过电压状态。
Abstract:
A system and method for controlling an adjustable speed drive (ASD) to decelerate an AC load during a generating mode of operation is disclosed. The ASD includes a capacitor and an inverter coupled to a DC link. A current sensor system is coupled to an output of the inverter. The ASD further includes a control system programmed to calculate an energy of the capacitor, generate a reference power using the calculated capacitor energy, and calculate a feedback power from realtime current signals received from the current sensor system. The control system compares the feedback power to the reference power, defines a frequency offset based on the comparison, generates a speed command using the frequency offset, and outputs the speed command to the inverter to maintain a smooth DC link voltage during deceleration.
Abstract:
A ventilation system includes first and second blowers connected to a plenum in parallel, with a first motor drive to control a speed of an electric motor of the first blower and a second motor drive to control a speed of an electric motor of the second blower. A controller associated with the first blower is programmed to receive a set point for a controlled variable that is controllable by operation of the first and second blowers, estimate a total air flow required from the first and second blowers to reach the controlled variable set point, calculate a blower speed ratio between a first blower speed and a second blower speed that provides the required total air flow at a minimum power consumption level, and generate commands to cause the first blower and the second blower to operate at speeds resulting in the calculated blower speed ratio.
Abstract:
A motor control system for selectively controlling power from a power source to a load is provided. The motor control system includes at least one PCB structure and a plurality of protection and control components mounted onto the at least one PCB structure so as to be electrically coupled therewith. The plurality of protection and control components includes a power converter operable to provide a controlled output power to the load, a plurality of switching devices operable to selectively control power flow from the power source into the power converter and to bypass the power converter, and one or more protection devices configured to selectively interrupt current flow from the power source to the power converter during a fault condition. The motor control system also includes a housing enclosing the at least one PCB structure and the plurality of protection and control components.
Abstract:
A variable frequency drive (VFD) circuit includes an input connectable to an AC source, a rectifier to convert an AC power input to a DC power, a DC link to receive DC power from the rectifier and having a DC link voltage thereon, a DC link capacitor bank with one or more capacitors connected to the DC link, and a pre-charge circuit coupled to the DC link capacitor. The pre-charge circuit further includes one or more resistors, one or more pre-charge relays each operable in on and off states to selectively control a current flow through the resistor(s) so as to control an initial pre-charge of the DC link capacitor, and an overvoltage relay operable in on and off states to selectively cut-off a current flow to the DC link capacitor bank, so as to prevent an overvoltage condition in the DC link capacitor bank.