Abstract:
A system for providing cooling of a turbine rotor wheel includes a rotor wheel including a plurality of dovetail slots spaced circumferentially about a peripheral surface of the rotor wheel. Each of the dovetail slots includes a pair of opposite upper slot tangs and a pair of opposite lower slot tangs. The system also includes at least one turbine blade. The turbine blade includes an airfoil, a platform, and a dovetail. The dovetail includes a pair of opposite upper dovetail tangs and a pair of opposite lower dovetail tangs. The dovetail further includes at least one inlet aperture extending longitudinally therethrough. The pair of upper dovetail tangs include a first cooling hole extending therethrough and coupled in flow communication with the at least one inlet aperture.
Abstract:
A gas turbine engine having a turbine that includes a stator blade and a rotor blade having a seal formed in a trench cavity defined therebetween. The seal may include: a stator overhang extending from the stator blade toward the rotor blade so to include an overhang topside, and, opposite the overhang topside, an overhang underside; a rotor outboard face extending radially inboard from a platform edge, the rotor outboard face opposing at least a portion of the overhang face across the axial gap of the trench cavity; an axial projection extending from the rotor outboard face toward the stator blade so to axially overlap with the stator overhang; and an interior cooling channel extending through the stator overhang to a port formed through the overhang underside. The port may be configured to direct a coolant expelled therefrom toward the axial projection.
Abstract:
A gas turbine engine having a turbine that includes a stator blade and a rotor blade having a seal formed in a trench cavity defined therebetween. The seal may include: a stator overhang extending from the stator blade toward the rotor blade so to include an overhang topside, and, opposite the overhang topside, an overhang underside; a rotor outboard face extending radially inboard from a platform edge, the rotor outboard face opposing at least a portion of the overhang face across the axial gap of the trench cavity; an axial projection extending from the rotor outboard face toward the stator blade so to axially overlap with the stator overhang; and an interior cooling channel extending through the stator overhang to a port formed through the overhang underside. The port may be configured to direct a coolant expelled therefrom toward the axial projection.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
A turbine in a gas turbine engine that includes a stator blade and a rotor blade having a seal formed in a trench cavity. The trench cavity may include an axial gap defined between opposing inboard faces of the stator blade and rotor blade. The seal may include: a stator overhang extending from the stator blade toward the rotor blade so to include an outboard edge and an inboard edge and, defined therebetween, an overhang face; a rotor outboard face extending radially inboard from a platform edge, the rotor outboard face opposing at least a portion of the overhang face across the axial gap of the trench cavity; and a first axial projection extending from the rotor outboard face toward the stator blade. The stator overhang and the first axial projection of the rotor blade may be configured so to axially overlap.
Abstract:
A system for cooling an angelwing coupled to a rotor blade in a gas turbine engine is provided. An angelwing coupled to a shank of a rotor blade includes at least one cooling passage extending from at least one inlet opening coupled in flow communication with a gas turbine engine inner wheelspace to at least one outlet opening coupled in flow communication with a gas turbine engine outer rotor/stator cavity. The at least one outlet opening is located in an upper surface of the angelwing. The at least one cooling passage receives pressurized cooling air channeled from the inner wheelspace, such that the pressurized cooling air is channeled into the at least one inlet opening and discharged from the at least one outlet opening.
Abstract:
A turbine in a gas turbine engine that includes a stator blade and a rotor blade having a seal formed in a trench cavity. The trench cavity may include an axial gap defined between opposing inboard faces of the stator blade and rotor blade. The seal may include: a stator overhang extending from the stator blade toward the rotor blade so to include an outboard edge and an inboard edge and, defined therebetween, an overhang face; a rotor outboard face extending radially inboard from a platform edge, the rotor outboard face opposing at least a portion of the overhang face across the axial gap of the trench cavity; and a first axial projection extending from the rotor outboard face toward the stator blade. The stator overhang and the first axial projection of the rotor blade may be configured so to axially overlap.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
A system for providing cooling of a turbine rotor wheel includes a rotor wheel including a plurality of dovetail slots spaced circumferentially about a peripheral surface of the rotor wheel. Each of the dovetail slots includes a pair of opposite upper slot tangs and a pair of opposite lower slot tangs. The system also includes at least one turbine blade. The turbine blade includes an airfoil, a platform, and a dovetail. The dovetail includes a pair of opposite upper dovetail tangs and a pair of opposite lower dovetail tangs. The dovetail further includes at least one inlet aperture extending longitudinally therethrough. The pair of upper dovetail tangs include a first cooling hole extending therethrough and coupled in flow communication with the at least one inlet aperture.