-
公开(公告)号:US20170159564A1
公开(公告)日:2017-06-08
申请号:US14962313
申请日:2015-12-08
Applicant: General Electric Company
Inventor: Brandon Wayne Miller , Duane Howard Anstead , Mohammed El Hacin Sennoun , Ning Fang , Kyle Robert Snow
CPC classification number: F02C7/14 , B64D37/34 , F01D25/18 , F02C7/06 , F02C7/224 , F05D2240/40 , F05D2260/213 , Y02T50/675
Abstract: A system for managing thermal transfer in at least one of an aircraft or a gas turbine engine includes a first engine system utilizing an oil for heat transfer. The oil of the first system has a temperature limit of at least about 500° F. The system additionally includes a fuel system having a deoxygenation unit for deoxygenating fuel in the fuel system, as well as a fuel-oil heat exchanger located downstream of the deoxygenation unit. The fuel-oil heat exchanger is in thermal communication with the oil in the first engine system and the fuel in the fuel system for transferring heat from the oil in the first engine system to the fuel in the fuel system.
-
公开(公告)号:US20220195959A1
公开(公告)日:2022-06-23
申请号:US17603151
申请日:2020-05-20
Applicant: General Electric Company
Inventor: Kevin Michael VandeVoorde , Joshua Tyler Mook , Aigbedion Akwara , Jason Joseph Bellardi , Mohammed El Hacin Sennoun , Mary Kathryn Thompson , Scott Douglas Waun , Michael Thomas Gansler , Michael Robert Notarnicola
Abstract: A system for energy conversion, the system including a closed cycle engine containing a volume of working fluid, the engine comprising a first chamber defining an expansion chamber and a second chamber defining a compression chamber each separated by a piston attached to a connection member of a piston assembly, and wherein the engine comprises a heater body in thermal communication with the first chamber, and further wherein the engine comprises a cold side heat exchanger in thermal communication with the second chamber, and wherein a third chamber is defined within the piston, wherein the third chamber is in selective flow communication with the first chamber, the second chamber, or both.
-
公开(公告)号:US11125184B2
公开(公告)日:2021-09-21
申请号:US16878736
申请日:2020-05-20
Applicant: General Electric Company
Inventor: Michael Robert Notarnicola , Joshua Tyler Mook , Kevin Michael VandeVoorde , Aigbedion Akwara , Mohammed El Hacin Sennoun , Mary Kathryn Thompson , Scott Douglas Waun , Michael Thomas Gansler
IPC: F02G1/055 , F02G1/04 , F28D9/04 , F28F7/02 , F28F13/00 , F28F13/14 , F02G1/053 , F02G1/057 , F02G1/047 , F02G1/05 , F02G1/044 , F02G1/043 , F28D21/00
Abstract: A constant density heat exchanger is provided. The constant density heat exchanger includes a housing extending between a first end and a second end and defining a chamber having an inlet and an outlet. A first flow control device is positioned at the inlet of the chamber and movable between an open position in which a working fluid is permitted into the chamber and a closed position in which the working fluid is prevented from entering the chamber. A second flow control device is positioned at the outlet of the chamber and movable between an open position in which the working fluid is permitted to exit the chamber and a closed position in which the working fluid is prevented from exiting the chamber. A heat exchange fluid imparts thermal energy to the volume of working fluid held at constant density within the chamber by the first and second control devices.
-
公开(公告)号:US11098647B2
公开(公告)日:2021-08-24
申请号:US16256629
申请日:2019-01-24
Applicant: General Electric Company
Inventor: Brandon Wayne Miller , Duane Howard Anstead , Mohammed El Hacin Sennoun , Ning Fang , Kyle Robert Snow
Abstract: A system for managing thermal transfer in at least one of an aircraft or a gas turbine engine includes a first engine system utilizing an oil for heat transfer. The oil of the first system has a temperature limit of at least about 500° F. The system additionally includes a fuel system having a deoxygenation unit for deoxygenating fuel in the fuel system, as well as a fuel-oil heat exchanger located downstream of the deoxygenation unit. The fuel-oil heat exchanger is in thermal communication with the oil in the first engine system and the fuel in the fuel system for transferring heat from the oil in the first engine system to the fuel in the fuel system.
-
公开(公告)号:US20210062756A1
公开(公告)日:2021-03-04
申请号:US17086868
申请日:2020-11-02
Applicant: General Electric Company
Inventor: Joshua Tyler Mook , Kevin Michael VandeVoorde , Aigbedion Akwara , Michael Robert Notarnicola , Jason Joseph Bellardi , Mohammed El Hacin Sennoun , Mohamed Osama , Zachary William Nagel , Victor Luis Marrero Ortiz
Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine may include a plurality of heating walls and heat sink, such as a plurality of heat transfer regions. The plurality of heating walls may be configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the plurality of heating walls may respectively define a corresponding plurality of heating fluid pathways therebetween, for example, fluidly communicating with the inlet plenum. At least a portion of the heat sink may be disposed about at least a portion of the monolithic heat exchanger body. The heat sink may include a plurality of working-fluid bodies, for example, including a plurality of working-fluid pathways that have a heat transfer relationship with the plurality of heating fluid pathways. Respective ones of the plurality of heat transfer regions may have a heat transfer relationship with a corresponding semiannular portion of the plurality of heating fluid pathways. Respective ones of the plurality of heat transfer regions may include a plurality of working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.
-
公开(公告)号:US20200370842A1
公开(公告)日:2020-11-26
申请号:US16878773
申请日:2020-05-20
Applicant: General Electric Company
Inventor: Joshua Tyler Mook , Kevin Michael VandeVoorde , Aigbedion Akwara , Michael Robert Notarnicola , Jason Joseph Bellardi , Mohammed El Hacin Sennoun , Mohamed Osama , Zachary William Nagel , Victor Luis Marrero Ortiz
Abstract: A monolithic heat exchanger body includes a plurality of heating walls and a plurality of combustion fins. The plurality of heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis. Adjacent portions of the plurality of heating walls respectively define a corresponding plurality of heating fluid pathways therebetween. The plurality of combustion fins are circumferentially spaced about a perimeter of an inlet plenum. The inlet plenum includes or fluidly communicates with a combustion chamber. The plurality of heating fluid pathways fluidly communicate with the inlet plenum. The plurality of combustion fins occupy a radially or concentrically inward portion of the monolithic heat exchanger body. The plurality of heating fluid pathways have a heat transfer relationship with a heat sink disposed about a radially or concentrically outward portion of the monolithic heat exchanger body. A plurality of conduction breaks disposed radially or concentrically outward relative to the plurality of combustion fins at least partially inhibit heat conduction from the plurality of combustion fins to the plurality of heating walls.
-
公开(公告)号:US20200370509A1
公开(公告)日:2020-11-26
申请号:US16878744
申请日:2020-05-20
Applicant: General Electric Company
Inventor: Joshua Tyler Mook , Kevin Michael VandeVoorde , Aigbedion Akwara , Michael Robert Notarnicola , Jason Joseph Bellardi , Mohammed El Hacin Sennoun , Mohamed Osama , Zachary William Nagel
Abstract: A monolithic heater body may include a combustor body, a hot-side heat exchanger body, and an eductor body. The combustor body may define a combustion chamber and a conditioning conduit circumferentially surrounding the combustion chamber. The conditioning conduit may fluidly communicate with the combustion chamber at a distal portion of the combustion chamber. The hot-side heat exchanger body may define a hot-side heat exchanger that includes a heating fluid pathway fluidly communicating with a proximal portion of the combustion chamber. The eductor body may define an eduction pathway fluidly communicating with a downstream portion of the heating fluid pathway and a proximal portion of the conditioning conduit.
-
公开(公告)号:US20200370446A1
公开(公告)日:2020-11-26
申请号:US16878875
申请日:2020-05-20
Applicant: General Electric Company
Inventor: Joshua Tyler Mook , Michael Thomas Gansler , Scott Douglas Waun , Kevin Michael VandeVoorde , Aigbedion Akwara , Michael Robert Notarnicola , Jason Joseph Bellardi , Mohammed El Hacin Sennoun , Mary Kathryn Thompson , Mohamed Osama
Abstract: An energy conversion apparatus may include an engine assembly, such as a monolithic engine assembly, that includes a first heater body and a first engine body. The first heater body may define a first portion of a first monolithic body or at least a portion of a first monolithic body-segment. The first engine body may define a second portion of the first monolithic body or at least a portion of a second monolithic body-segment operably coupled or operably couplable to the first heater body. The engine assembly may include a second heater body and/or a second engine body. The second heater body may define a portion of a second monolithic body or a third monolithic body-segment. The second engine body may define a portion of the second monolithic body or a fourth monolithic body-segment operably coupled or operably couplable to the second heater body and/or the first engine body.
-
公开(公告)号:US10323540B2
公开(公告)日:2019-06-18
申请号:US14960800
申请日:2015-12-07
Applicant: General Electric Company
Inventor: Mohammed El Hacin Sennoun
IPC: F02C7/12 , F01D25/14 , F02C3/04 , F02C9/18 , F04D29/52 , F02K3/06 , F02C7/06 , F02C7/14 , F02C7/18 , F02C9/16
Abstract: A fluid cooling system for use in a gas turbine engine including a fan casing circumscribing a core gas turbine engine includes a heat source configured to transfer heat to a heat transfer fluid and a primary heat exchanger coupled in flow communication with the heat source. The primary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the fan casing. The fluid cooling system also includes a secondary heat exchanger coupled in flow communication with the primary heat exchanger. The secondary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the core gas turbine engine. The fluid cooling system also includes a bypass mechanism coupled in flow communication with the secondary heat exchanger. The bypass mechanism is selectively moveable based on a temperature of a fluid medium to control a cooling airflow through the secondary heat exchanger.
-
公开(公告)号:US10317881B2
公开(公告)日:2019-06-11
申请号:US15446764
申请日:2017-03-01
Applicant: General Electric Company
Inventor: Mohammed El Hacin Sennoun
IPC: B33Y50/02 , G05B19/4099
Abstract: The present disclosure generally relates to additive manufacturing or printing of an object using parallel processing of files comprising 3D models of the object and/or portions thereof. A master file comprising a 3D model of the object is divided into subordinate files, wherein each subordinate file comprises a 3D model of a corresponding portion of the object. Each subordinate file is processed in parallel, controlling at least a first laser source to fabricate each portion from a build material. Parallel processing according to the methods of the present disclosure expedites additive manufacturing or printing over conventional methods that build an object in layers completed in series.
-
-
-
-
-
-
-
-
-