Abstract:
A hot gas path duct or unibody liner for a gas turbine includes a main body having a forward end and an aft end. The main body defines a cross-sectional flow area and an axial flow length that extends between the forward end and the aft end. The main body further defines a fuel injection portion disposed downstream from the forward end and upstream from the aft end. The cross-sectional flow area decreases along the axial flow length between the forward end and the fuel injection portion and increases along at least a portion of the axial flow length downstream from the fuel injection portion.
Abstract:
An air management arrangement for a late lean injection combustor system includes a combustor liner defining a combustor chamber. Also included is a sleeve surrounding at least a portion of the combustor liner, the combustor liner and the sleeve defining a cooling annulus for routing a cooling airflow from proximate an aft end of the combustor liner toward a forward end of the combustor liner. Further included is a cooling airflow divider region configured to split the cooling airflow into a first cooling airflow portion and a second cooling airflow portion, wherein the first cooling airflow portion is directed to at least one primary air-fuel injector, wherein the second cooling airflow portion is directed to at least one lean-direct injector extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into the combustor chamber.
Abstract:
An aft frame assembly has a main body with an upstream facing surface, a downstream facing surface, a radially outer facing surface and a radially inner facing surface. Feed hole inlets are located on the upstream facing surface and radially outward of the outer sleeve so that the feed hole inlets are located to receive input from a high pressure plenum. The feed hole inlets are coupled to cooling channels that pass through the main body. Microchannels are formed in or near the radially inner facing surface and the downstream facing surface. The cooling channels are connected to and terminate in the microchannels. Exit holes are connected to the plurality of microchannels, and the exit holes are located radially outward of the transition piece and radially inward of the outer sleeve. The exit holes are located to exhaust into the cooling annulus.
Abstract:
A power generation system includes a power generation plant portion including a feedwater heating system configured to channel a feedwater stream and a carbon dioxide capture portion coupled in flow communication with the power generation plant portion. The carbon dioxide capture portion includes a solvent circuit configured to channel a solvent stream through at least a portion of the carbon dioxide capture portion. The carbon dioxide capture portion also includes a heat recovery system coupled in flow communication with the solvent circuit and the feedwater heating system. The heat recovery system is configured to transfer heat energy from the solvent stream to the feedwater stream and to channel the heated feedwater from the heat recovery system to the feedwater heating system.
Abstract:
An aft frame assembly has a main body with an upstream facing surface, a downstream facing surface, a radially outer facing surface and a radially inner facing surface. Feed hole inlets are located on the upstream facing surface and radially outward of the outer sleeve so that the feed hole inlets are located to receive input from a high pressure plenum. The feed hole inlets are coupled to cooling channels that pass through the main body. Microchannels are formed in or near the radially inner facing surface and the downstream facing surface. The cooling channels are connected to and terminate in the microchannels. Exit holes are connected to the plurality of microchannels, and the exit holes are located radially outward of the transition piece and radially inward of the outer sleeve. The exit holes are located to exhaust into the cooling annulus.
Abstract:
The present disclosure relates to a gas turbine engine system having a plurality of combustors, wherein a first combustor includes one or more fuel nozzles and one or more fuel injectors positioned downstream from the fuel nozzles. The gas turbine engine may also include a first valve disposed along a fuel delivery line between a fuel circuit and the first combustor to adjust a first flow of the fuel to the first combustor. The gas turbine engine may also include a second valve disposed along a fuel delivery line between the first valve and at least one of the one or more fuel injectors to adjust a second flow of the fuel to at least one of the one or more fuel injectors.
Abstract:
A system for supplying a working fluid to a combustor includes a fuel nozzle, a combustion chamber downstream from the fuel nozzle, and a plurality of fuel injectors circumferentially arranged around the combustion chamber. The plurality of fuel injectors provide fluid communication into the combustion chamber, and a separate cap for each fuel injector defines a separate volume around a different fuel injector outside of the combustion chamber.
Abstract:
An assembly for use in a fuel injection system within a combustor of a combustion turbine engine is described. The assembly may include: a first port formed through an outer radial wall of the combustor and a second port formed through an inner radial wall. A plenum may be formed about the first port. A tube may be formed that has a first end positioned within the first port and a second end positioned within the second port. At the first end, the tube may be sized smaller than the first port such that two passages are defined therethrough: a first passage defined about an exterior of the tube; and a second passage defined through an interior of the tube.
Abstract:
An aft frame assembly for a gas turbine transition piece includes a main body having an upstream facing surface and a downstream facing surface. A plurality of feed hole inlets are located on the upstream facing surface. The feed hole inlets are coupled to a plurality of cooling channels that pass through the main body towards the downstream facing surface. A plurality of plenums are located in or near the downstream facing surface, and each cooling channel is connected to and terminates in one of the plenums. The cooling channels are inputs to the plenums. A plurality of microchannel cooling slots are formed in or near the downstream facing surface, and each microchannel cooling slot is connected to one of the plenums. The microchannel cooling slots are outputs of the plenums. Two or more cooling channels and two or more microchannel cooling slots are connected to one of the plenums.
Abstract:
An aft frame assembly for a gas turbine transition piece has a main body with an upstream facing surface, a downstream facing surface, a radially outer facing surface and a radially inner facing surface. A plurality of feed hole inlets are located on the upstream facing surface. Each of the feed hole inlets are coupled to one of a plurality of cooling channels passing through the main body towards the radially inner facing surface. A plurality of microchannels are formed near the radially inner facing surface and extend at least partially along the downstream facing surface. The cooling channels are connected to and terminate in the microchannels. A pre-sintered preform is located on the radially inner facing surface of the main body.