Discriminitive learning for object detection
    11.
    发明授权
    Discriminitive learning for object detection 有权
    对象检测的歧视性学习

    公开(公告)号:US09098741B1

    公开(公告)日:2015-08-04

    申请号:US13837621

    申请日:2013-03-15

    Applicant: Google Inc.

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection are disclosed. Methods can include, for each of a plurality of locations in one or more positive images, image filters are identified, each image filter representing visual features of a location in a positive image (e.g., an image that includes a particular object). Positive location feature scores and negative location feature scores are determined for locations within images. A positive location feature score is based on a similarity between the image filter and feature values for a positive image. A negative location feature score is determined based on a similarity between the image filter and feature values for a negative image. A distinctive location is identified based on the positive and negative location feature scores, and distinguishing feature values for identifying the particular object are identified for the distinctive location.

    Abstract translation: 公开了包括在计算机存储介质上编码的用于对象检测的计算机程序的方法,系统和装置。 方法可以包括对于一个或多个正图像中的多个位置中的每一个,识别图像滤波器,每个图像滤波器表示正图像中的位置的视觉特征(例如,包括特定对象的图像)。 确定位置图像中的位置特征得分和负位置特征得分。 正位置特征得分基于图像滤波器和正图像的特征值之间的相似度。 基于图像滤波器和负像的特征值之间的相似度来确定负位置特征得分。 基于正负位置特征得分识别特征位置,识别特定对象的区别特征值用于特征位置。

    OBJECT DETECTION USING DEEP NEURAL NETWORKS
    12.
    发明申请
    OBJECT DETECTION USING DEEP NEURAL NETWORKS 有权
    使用深层神经网络的对象检测

    公开(公告)号:US20150170002A1

    公开(公告)日:2015-06-18

    申请号:US14288194

    申请日:2014-05-27

    Applicant: Google Inc.

    CPC classification number: G06K9/66 G06K9/4628

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting objects in images. One of the methods includes receiving an input image. A full object mask is generated by providing the input image to a first deep neural network object detector that produces a full object mask for an object of a particular object type depicted in the input image. A partial object mask is generated by providing the input image to a second deep neural network object detector that produces a partial object mask for a portion of the object of the particular object type depicted in the input image. A bounding box is determined for the object in the image using the full object mask and the partial object mask.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于检测图像中的对象。 其中一种方法包括接收输入图像。 通过将输入图像提供给产生输入图像中描绘的特定对象类型的对象的完整对象掩模的第一深层神经网络对象检测器来生成完整对象掩码。 通过将输入图像提供给第二深神经网络对象检测器来产生部分对象掩模,该第二深神经网络对象检测器为输入图像中描绘的特定对象类型的对象的一部分产生部分对象掩模。 使用完整对象掩码和部分对象掩码,为图像中的对象确定边框。

Patent Agency Ranking