Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for providing a representation based on structured data in resources. The methods, systems, and apparatus include actions of receiving target acoustic features output from a neural network that has been trained to predict acoustic features given linguistic features. Additional actions include determining a distance between the target acoustic features and acoustic features of a stored acoustic sample. Further actions include selecting the acoustic sample to be used in speech synthesis based at least on the determined distance and synthesizing speech based on the selected acoustic sample.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
An input signal that includes linguistic content in a first language may be received by a computing device. The linguistic content may include text or speech. The computing device may associate the linguistic content in the first language with one or more phonemes from a second language. The computing device may also determine a phonemic representation of the linguistic content in the first language based on use of the one or more phonemes from the second language. The phonemic representation may be indicative of a pronunciation of the linguistic content in the first language according to speech sounds of the second language.
Abstract:
Methods and systems for sharing of adapted voice profiles are provided. The method may comprise receiving, at a computing system, one or more speech samples, and the one or more speech samples may include a plurality of spoken utterances. The method may further comprise determining, at the computing system, a voice profile associated with a speaker of the plurality of spoken utterances, and including an adapted voice of the speaker. Still further, the method may comprise receiving, at the computing system, an authorization profile associated with the determined voice profile, and the authorization profile may include one or more user identifiers associated with one or more respective users. Yet still further, the method may comprise the computing system providing the voice profile to at least one computing device associated with the one or more respective users, based at least in part on the authorization profile.
Abstract:
Implementations related to system and techniques for providing audio news reports are discussed. A computer-implemented method includes identifying, with a computer system, one or more news preferences for a first user, selecting a plurality of news stories, wherein particular ones of the new stories are determined to be responsive to the news preferences for the first user and comprise audio versions of stories converted automatically from textual news stories, assembling, with the computer system and for the first user, an audio news report that includes the audio versions of the selected news stories, and delivering, to a computing device, the assembled audio news report.
Abstract:
Methods and systems for sharing of adapted voice profiles are provided. The method may comprise receiving, at a computing system, one or more speech samples, and the one or more speech samples may include a plurality of spoken utterances. The method may further comprise determining, at the computing system, a voice profile associated with a speaker of the plurality of spoken utterances, and including an adapted voice of the speaker. Still further, the method may comprise receiving, at the computing system, an authorization profile associated with the determined voice profile, and the authorization profile may include one or more user identifiers associated with one or more respective users. Yet still further, the method may comprise the computing system providing the voice profile to at least one computing device associated with the one or more respective users, based at least in part on the authorization profile.
Abstract:
A device may receive a plurality of speech sounds that are indicative of pronunciations of a first linguistic term. The device may determine concatenation features of the plurality of speech sounds. The concatenation features may be indicative of an acoustic transition between a first speech sound and a second speech sound when the first speech sound and the second speech sound are concatenated. The first speech sound may be included in the plurality of speech sounds and the second speech sound may be indicative of a pronunciation of a second linguistic term. The device may cluster the plurality of speech sounds into one or more clusters based on the concatenation features. The device may provide a representative speech sound of the given cluster as the first speech sound when the first speech sound and the second speech sound are concatenated.