Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a factorization model to learning features of model inputs of a trained model such that the factorization model is predictive of outcome for which the machine learned model is trained.
Abstract:
Systems and techniques are disclosed for generating weighted machine learned models using multi-shard combiners. A learner in a machine learning system may receive labeled positive and negative examples and workers within the learner may be configured to receive either positive or negative examples. A positive and negative statistic may be calculated for a given feature and may either be applied separately in a model or may be combined to generate an overall statistic.