Abstract:
Embodiments of a turbine nozzle having slip joints impregnated by an oxidation-resistant sealing material are provided, as are embodiments of methods for the manufacture of turbine nozzles. In one embodiment, the method includes providing a support ring, a slip joint ring substantially concentric with the support ring and radially spaced apart therefrom, and a plurality of vanes fixedly coupled to the support ring. The plurality of vanes extends radially from the support ring into a plurality of circumferentially-spaced slots provided in the slip joint ring to form a plurality of slip joints therewith. The plurality of slip joints are impregnated with a silicon-modified aluminide sealing material. The silicon-modified aluminide sealing material impedes gas flow into the radial slip joints during operation of the turbine nozzle, while also fracturing to permit relative radial movement between the plurality of vanes and the slip joint ring along the plurality of slip joints.
Abstract:
Embodiments of a turbine nozzle having slip joints impregnated by an oxidation-resistant sealing material are provided, as are embodiments of methods for the manufacture of turbine nozzles. In one embodiment, the method includes providing a support ring, a slip joint ring substantially concentric with the support ring and radially spaced apart therefrom, and a plurality of vanes fixedly coupled to the support ring. The plurality of vanes extends radially from the support ring into a plurality of circumferentially-spaced slots provided in the slip joint ring to form a plurality of slip joints therewith. The plurality of slip joints are impregnated with a silicon-modified aluminide sealing material. The silicon-modified aluminide sealing material impedes gas flow into the radial slip joints during operation of the turbine nozzle, while also fracturing to permit relative radial movement between the plurality of vanes and the slip joint ring along the plurality of slip joints.
Abstract:
A tie shaft for a rotating group of an engine core includes a cylindrical body having an internal surface and an external surface and extending between a forward end and an aft end. The tie shaft further includes a first group of internal grooves on the internal surface of the cylindrical body proximate to the forward end and a second group of internal grooves on the internal surface of the cylindrical body proximate to the aft end.
Abstract:
Turbine nozzles and cooling systems for cooling slip joints therein are provided. The turbine nozzle has an endwall, a vane coupled to the endwall, a slip joint, and a plurality of airfoil quenching holes that cooperate with a plurality of endwall cooling holes. The vane comprises a leading edge and a trailing edge interconnected by a pressure sidewall and a suction sidewall and an end portion. The slip joint is between the end portion and the endwall. The airfoil quenching holes are defined through the pressure sidewall in the end portion. The endwall cooling holes are defined through the endwall along the pressure sidewall and in proximity to the leading edge. The airfoil quenching holes and endwall cooling holes are disposed adjacent the slip joint.
Abstract:
Methods for manufacturing a turbine nozzle are provided. A plurality of nozzle segments is formed. Each nozzle segment comprises an endwall ring portion with at least one vane. The plurality of nozzle segments are connected to an annular endwall forming a segmented annular endwall concentric to the annular endwall with the at least one vane of each nozzle segment extending between the segmented annular endwall and the annular endwall.
Abstract:
A tie shaft for a rotating group of an engine core includes a cylindrical body having an internal surface and an external surface and extending between a forward end and an aft end. The tie shaft further includes a first group of internal grooves on the internal surface of the cylindrical body proximate to the forward end and a second group of internal grooves on the internal surface of the cylindrical body proximate to the aft end