Abstract:
A gas turbine engine fuel delivery system includes a mechanically-driven fuel pump, an electrically-driven fuel pump, and an engine control. The mechanically-driven fuel pump is adapted to receive a drive torque from a gas turbine engine draw fuel into its fuel inlet and discharge the fuel from its fuel outlet. The electrically-driven fuel pump has a first fuel inlet/outlet that is in fluid communication with the mechanically-driven fuel pump fuel inlet, and also has a second fuel inlet/outlet. The engine control is responsive to an engine start signal to cause the electrically-driven fuel pump to be temporarily energized to pump fuel from the first fuel inlet/outlet to the second fuel inlet/outlet, and is responsive to an engine shutdown signal to cause the electrically-driven pump to be temporarily energized to pump fuel from the second fuel inlet/outlet to the first fuel inlet/outlet.
Abstract:
A two-position, two-stage servo valve includes a valve body, a valve element, a control pressure chamber, and a control element. The valve body has an inner surface that defines a valve element chamber that includes a first control chamber and a second control chamber. The first control chamber is larger than the second control chamber. The valve element has first and second ends and is disposed within the valve element chamber and is movable between a first valve position and a second valve position. The first end is larger than the second end and is disposed within the first control chamber, and the second end is disposed within the second control chamber. The control pressure chamber includes a control pressure port that is in continuous fluid communication with the first control chamber. The control element is movable between a first control position and a second control position.
Abstract:
A gas turbine engine fuel supply system includes a primary gear pump, a secondary gear pump, and a pump bypass valve. The primary gear pump always actively delivers fuel to the downstream fuel system, and is sized to supply 100% of the burn flow needed at a select low demand condition. The secondary gear pump is sized to make up the remainder of the flow at high demand conditions, and actively delivers fuel to the downstream fuel system only during those conditions. To supply discharge fuel pressures in excess of gear pump capability, a supercharger pump is disposed upstream of the primary and secondary gear pumps. The pump bypass valve is configured to regulate fuel pressure at the primary gear pump outlet to one of a plurality of preset differential pressures above one of a plurality of fuel load pressures and prevents reverse pressurization of the gear pumps.
Abstract:
A gas turbine engine fuel delivery system includes a mechanically-driven fuel pump, an electrically-driven fuel pump, and an engine control. The mechanically-driven fuel pump is adapted to receive a drive torque from a gas turbine engine draw fuel into its fuel inlet and discharge the fuel from its fuel outlet. The electrically-driven fuel pump has a first fuel inlet/outlet that is in fluid communication with the mechanically-driven fuel pump fuel inlet, and also has a second fuel inlet/outlet. The engine control is responsive to an engine start signal to cause the electrically-driven fuel pump to be temporarily energized to pump fuel from the first fuel inlet/outlet to the second fuel inlet/outlet, and is responsive to an engine shutdown signal to cause the electrically-driven pump to be temporarily energized to pump fuel from the second fuel inlet/outlet to the first fuel inlet/outlet.