Abstract:
Embodiments of the present invention provide a method for switching a roadside navigation unit in a navigation system. The method includes: receiving, by an OBU, a switching notification message from a first RSU, where the switching notification message is used to instruct the OBU to prepare to switch a home RSU of the OBU from the first RSU to a second RSU; sending, by the OBU, a registration request to the second RSU to request to obtain local path information of the OBU within a coverage area of the second RSU; receiving, by the OBU, the local path information; and switching, by the OBU, the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
Abstract:
Embodiments of the present invention provide a positioning method, the positioning method includes: receiving, by the first base station, an RTK measurement value for an RTK reference source; determining, by the first base station, first correction information according to the RTK measurement value, where the first correction information is correction information for positioning information obtained by the RTK reference source from a positioning system; sending, by the first base station, the first correction information to a first mobile terminal, so that the first mobile terminal determines a location of the first mobile terminal according to the first correction information.
Abstract:
Embodiments of the present invention provide a battery presence detecting apparatus, including: a detection triggering module, configured to detect a charging current on a battery terminal and trigger a logic control module when the charging current is less than a preset current threshold; the logic control module, configured to turn off a battery charging system and instruct a charging and discharging balancing module to perform a charging operation and then a discharging operation on the battery terminal; and a detection determining module, configured to detect a voltage on the battery terminal when the discharging operation is performed and determine whether the voltage on the battery terminal is less than a preset detection voltage, and if the voltage on the battery terminal is less than the preset detection voltage, determine that the battery is absent, and otherwise, determine that the battery is present.
Abstract:
The method includes: obtaining, a traffic application type and first traffic information of a traffic target object; determining, an interaction coverage area based on the traffic application type and the first traffic information; and determining, a first area, and sending the traffic application type and the first traffic information to a global TCU, where a second local TCU is a local TCU adjacent to the first local TCU, the first area is an overlapping area between a management area of at least one third local TCU and the interaction coverage area, and the third local TCU is a local TCU not adjacent to the first local TCU. An interaction coverage area is purposefully determined based on a traffic scenario, and through division of processing of traffic information by a local TCU and a global TCU, waste of communication and processing resources is reduced.
Abstract:
This application relates to a hardware interface, and in particular, to a USB Type-C interface used for an electronic device. In this application, a step is disposed on the USB Type-C interface to place a display screen. This shortens a distance from a front display screen of the electronic device to an edge of the electronic device, and increases a screen-to-body ratio.
Abstract:
Embodiments of the present invention provide a positioning method, the positioning method includes: obtaining, by the server, first location information, where the first location information is used to indicate a location of the base station; obtaining, by the server, correction information for the base station according to the location of the base station; and sending, by the server, the correction information to the base station, so that the base station forwards the correction information to the mobile terminal, and the mobile terminal determines a location of the mobile terminal according to the correction information.
Abstract:
The present invention provides a navigation system, apparatus, and method. The navigation system includes a global navigation apparatus, a first roadside navigation apparatus, and a terminal navigation apparatus. The terminal navigation apparatus is configured to send, to the global navigation apparatus, a global path request used to request for a road-level global path. The global navigation apparatus is configured to: determine the global path according to the global path request, and send, to the terminal navigation apparatus, first indication information used to indicate the global path. The first roadside navigation apparatus is configured to: determine a lane-level local path according to the global path, and send, to the terminal navigation apparatus, second indication information used to indicate the local path.
Abstract:
The present disclosure provides a charging method and a terminal. The method includes: automatically learning, by the terminal, historical data by using a machine learning algorithm, to establish a habit model of a user, and matching a current time with the usage habit model of the user to determine a current charging intention of the user, so as to determine a charging mode according to the charging intention.. By means of the technical solutions, a charging requirement of a user can be effectively identified, and on-demand charging can be implemented. This improves user experience while avoiding a battery life decrease caused by frequent fast charging.
Abstract:
A data input method and apparatus, and user equipment are provided. The method includes: when it is determined that an operation of a user on the user equipment UE is not performed in a preset display area, deliver an event corresponding to the operation to a first operating environment for processing, where the preset display area runs in a second operating environment of the UE, and the second operating environment has a higher security level than the first operating environment. This can better improve security of an event generated when the user operates a program that runs in a Normal World of the user equipment, and can directly operate an event that runs in the Normal World.