OPTICAL POWER EQUILIBRIUM METHOD AND APPARATUS

    公开(公告)号:US20190238223A1

    公开(公告)日:2019-08-01

    申请号:US16378527

    申请日:2019-04-08

    Abstract: The present invention discloses an optical power equilibrium method and apparatus. The method includes: configuring a liquid crystal on silicon LCOS as a blazed grating pattern whose phase periodically changes, where each period includes three grating segments, a pixel quantity in each period does not change, and a second grating segment is located between a first grating segment and a third grating segment; monitoring power of wavelength signals in a WDM signal, where the WDM signal includes a first wavelength signal; and reducing a phase modulation depth and a pixel quantity of the second grating segment in each period at a first location if power of the first wavelength signal is greater than preset target power, so that the power of the first wavelength signal is the same as the target power, where the first location is a location at which the first wavelength signal is incident to the LCOS.

    RECONFIGURABLE OPTICAL ADD/DROP MULTIPLEXER
    12.
    发明申请

    公开(公告)号:US20180267247A1

    公开(公告)日:2018-09-20

    申请号:US15988760

    申请日:2018-05-24

    Abstract: Embodiments of the present invention provide a reconfigurable optical add/drop multiplexer, including: an input component, an output component, a beamsplitter, a first switch array, a wavelength dispersion system, a redirection system, and a second switch array. The input component includes M+P input ports, the output component includes N output ports, the beamsplitter is configured to: receive M input beams from M input ports, and split each of the M input beams into at least N parts, to obtain at least M×N beams; the first switch array includes at least P switch units; and the second switch array includes N rows of switch units. The first switch array, the beamsplitter, the wavelength dispersion system, the redirection system, and the second switch array are arranged so that P optical add beams and sub-beams of M×N beams in the at least M×N beams can be routed to the N output ports.

Patent Agency Ranking