Abstract:
Embodiments of the present invention are directed to a method and system for detecting foreign matter in a container, and in particular to the detection of foreign matter during bottle processing operations. The detection system may include an optically clear container support for supporting the container and a light source for illuminating the container. The container may additionally include an imaging device disposed on an opposite side of the optically clear support from the container, wherein the imaging device captures an image of the illuminated container and container contents through the optically clear support in order to detect foreign matter in the container contents.
Abstract:
A multi-channel fiber optic rotary joint (FORJ) includes an external housing, a stationary collimator array, a rotating collimator array, an all-reflective de-rotating prism and a gear ratio. The external housing contains an internal cavity having a longitudinal rotation axis. The stationary collimator array is affixed to the external housing approximate a first end of the internal cavity. The rotating collimator array is rotatably attached to the external housing approximate a second end of the cavity. The second end of the cavity is opposite the first end of the cavity. The rotating collimator array is configured to rotate about the rotation axis. The de-rotating prism is located along the rotation axis within the internal cavity between the stationary collimator array and the rotating collimator array. The prism is retained in a prism housing, which is rotatably attached to the external housing and the prism housing is configured to rotate about the rotation axis.
Abstract:
A virtual computing services deployment network provides a consistent user experience from a variety of locations via a connection fabric for accessing a virtual desktop. The connection fabric identifies a user profile defining the virtualized desktop resources required for a particular user. The connection fabric includes distributed data and processing in nodes distributed throughout a public access network accessible from a user access device. Each of the fabric nodes is operable to provide an identifier (such as an IP address) of a computing resource adapted to provide the user specific desktop. A user access device accesses a local fabric node in the connection fabric, and the fabric node determines a computing resource matching a user profile of expected computing resources. The fabric node associates the user access device with the computing resource and sends the user access device an identifier for directly accessing the computing resource. The determined computing resource may be determined by a centralized virtual computing approach, thus providing appropriate scaling without significantly impacting the existing fabric.
Abstract:
A heat exchanger evaluation system (84) includes a refrigeration subsystem (126) and a platform (94) in communication with the subsystem (126) for attachment of a heat exchanger (32). The system, (84) further includes a thermal imaging camera (168) and a monitor (100). A method (180) entails routing a fluid (38) through the heat exchanger (32) via the refrigeration subsystem (126). The camera (168) detects the temperature variation across the heat exchanger (32) as the fluid (38) flows through the heat exchanger, and provides successive thermal images representing the temperature variation responsive to the flow of the fluid (38). The thermal images are utilized to determine an efficacy of the flow through the heat exchanger (32). In particular, a determination can be made as to whether the flow deviates from a pre-determined flow path (79) of the fluid (38) through the heat exchanger.
Abstract:
A receiver (24) for a condenser system (20) includes a body (32) in fluid communication with a header (28) of the condenser system (20). A first cap (38) is coupled to an end (34) of the body (32) and has a saddle portion (40) coupled to the header (28). The receiver (24) further includes a tube section (42) coupled to a second end (36) of the body. A second cap (50) is removably interconnected with the tube section (42) following insertion of a service cartridge (76) into the body (32). The service cartridge (76) includes a substantially-rigid tubular member (78) having rib members (84) radially extending from an outer surface (86) of the tubular member (78). Covers (90, 92), each having openings (94, 96), are coupled to opposing ends of the tubular member (78). The service cartridge (76) includes multiple features for drying, filtering, and/or leak detection.