Abstract:
A method is provided for gamut clipping with preprocessing enabled as software instructions stored in a computer-readable medium and executable by a processor. The instructions provide a color in a color space defined by at least three attributes. If the color lies outside a gamut boundary in the first color space, a distance is measured from the color to the gamut boundary. In response to the measured distance, a weight is calculated for an attribute of the color. Then, it is determined if the attribute of the color is to be shifted. If so, an attribute shift amount is derived. The attribute shift amount of the color is modified by applying the weighting. The attribute of the first color is shifted by the weighted attribute shift amount, creating a post-processed color. The post-processed color is then clipped.
Abstract:
A method is provided for adaptively generating perceptually uniform printer characterization samples in a three-dimensional (3-D) signal space. The method comprises: generating lines, each including a plurality of samples, in a printer 3-D signal space; printing signal space color targets; measuring the signal space color targets; generating lines with a plurality of perceptually uniform samples; generating polygon shapes in the 3-D signal space from the perceptually uniform sampled lines; calculating addition perceptually uniform sample points associated with each polygon; and, generating a final target in the printer 3-D signal space using the calculated perceptually uniform sample points. In one aspect, generating lines, includes: for each line, generating a metric distance function; creating a plurality of perceptually uniform samples on the function output axis; and, using the inverse of the metric distance function, mapping perceptually uniform samples onto the line.
Abstract:
A method is provided for gamut clipping with preprocessing enabled as software instructions stored in a computer-readable medium and executable by a processor. The instructions provide a color in a color space defined by at least three attributes. If the color lies outside a gamut boundary in the first color space, a distance is measured from the color to the gamut boundary. In response to the measured distance, a weight is calculated for an attribute of the color. Then, it is determined if the attribute of the color is to be shifted. If so, an attribute shift amount is derived. The attribute shift amount of the color is modified by applying the weighting. The attribute of the first color is shifted by the weighted attribute shift amount, creating a post-processed color. The post-processed color is then clipped.
Abstract:
Aspects of the present invention are related to systems, methods and apparatus for calibration of multiple display apparatus in a display ensemble.
Abstract:
Aspects of the present invention relate to methods and systems for determining output responses and device targets for multi-colorant output devices. Some aspects relate to methods and systems for multi-dimensional rectilinear sampling, transformation of samples from an unlimited colorant space to a colorant-limited space, obtaining additional samples within a colorant-limitation hyperplane and interpolation of values in a colorant-limited space.
Abstract:
Aspects of the present invention are related to systems, methods and apparatus for calibration of multiple display apparatus in a display ensemble.
Abstract:
Aspects of the present invention relate to methods and systems for determining output responses and device targets for multi-colorant output devices. Some aspects relate to methods and systems for multi-dimensional rectilinear sampling, transformation of samples from an unlimited colorant space to a colorant-limited space, obtaining additional samples within a colorant-limitation hyperplane and interpolation of values in a colorant-limited space.
Abstract:
An imaging system includes an imaging sensing device sensing an object having a first background color and a backing in opposing relationship with the object having a second background color which is substantially the same as the first background color. The imaging system determines at least one general bounding region of the object based upon a shadow cast onto backing by the object.