Abstract:
There is provided a disk drive including a disk drive base, a disk rotatably coupled to the disk drive base, and a spindle motor attached to the disk drive base and configured to support the disk for rotating the disk with respect to the disk drive base. The disk drive further includes a filter component. The filter component includes a filter housing coupled to the disk drive base, and a filter element disposed within the filter housing for filtering disk rotation induced airflow. The filter element includes a coarse section and a fine section. The coarse section has a porosity greater than a porosity of the fine section.
Abstract:
A novel disk drive includes a disk and a spindle motor to which the disk is attached to rotate about an axis of rotation. The disk drive also includes a stationary plate facing and disposed over the disk, wherein the stationary plate includes a plurality of grooves through which rotation-induced air flows from an inlet end to an outlet end. The disk drive also includes a recirculation filter coupled to and immediately adjacent said outlet end of said plurality of grooves.
Abstract:
There is provided a disk drive including a disk drive base, a disk rotatably coupled to the disk drive base, and a spindle motor attached to the disk drive base and configured to support the disk for rotating the disk with respect to the disk drive base. The disk drive further includes a filter component. The filter component includes a filter housing coupled to the disk drive base, and a filter element disposed within the filter housing for filtering disk rotation induced airflow. The filter element includes a coarse section and a fine section. The coarse section has a porosity greater than a porosity of the fine section.
Abstract:
A disk drive including a disk drive base, a disk coupled to the disk drive base, and a head stack assembly coupled to the disk drive base. The disk drive further includes an airflow diverter filter component disposed upstream of the head stack assembly with respect to disk rotation induced airflow for modifying the disk rotation induced airflow adjacent the head stack assembly. The filter component includes a first filter element disposed adjacent the disk surface, a second filter element disposed between the first filter element and the head stack assembly, and a third filter element having a porosity finer than the first and second filter elements. The third filter element is generally radially further than the second filter element from the axis of rotation. The disk rotation induced airflow generally enters the filter component through the first filter element and exits through the second and third filter elements.
Abstract:
A disk drive includes a disk clamp for clamping a plurality of disks to a spindle motor, and a disk spacer positioned between first and second disks. The first disk has a plurality of first disk through apertures adjacent its inner diameter. The first disk through apertures are circumferentially spaced-apart and extend longitudinally through the first disk. The disk spacer has a plurality of spacer apertures that are circumferentially spaced-apart and extend longitudinally through a portion of a thickness of the disk spacer. The disk clamp is adjacent to the first disk and has a plurality of clamp through apertures adjacent an outer diameter of the disk clamp. The clamp through apertures are circumferentially spaced-apart and extend longitudinally through the disk clamp. The first disk through apertures, the spacer apertures, and the clamp through apertures are aligned for allowing airflow to pass through when the plurality of disks is rotating.
Abstract:
A disk drive includes a head gimbal assembly that includes structure that decreases the pitch angle of the load beam, which decreases disk flutter induced track mis-registration. According to one embodiment, the disk drive includes a body portion including a bore defining a pivot axis; an actuator arm cantilevered from the body portion and a head gimbal assembly (HGA) supported at the actuator arm. The HGA includes a load beam having a first end and a second end, the first end being attached to the actuator arm, the load beam defining a load beam feature near the second end, at least a portion of the load beam feature defining an extension that is parallel to the pivot axis and that has a rectangular cross-section having a length to width aspect ratio that is greater than 1. A slider is coupled to a free end of the load beam extension, and a gimbal coupled to the second end of the load beam and to the slider.
Abstract:
The base of a disk drive defines an interior shroud surface. The interior shroud surface is configured to follow a portion of the curvature of the disk at a distance from the outer diameter of the disk. The interior shroud surface of the base may define one or more channels for modifying the airflow developed as the disk rotates. The interior shroud surface defines an opening to enable the head stack assembly to pivot over the disk, which opening is bounded by a leading shroud portion and a trailing shroud portion. The leading shroud portion and/or the trailing shroud portion may also define a channel or channels for modifying the airflow that is developed as the disk rotates.
Abstract:
A stationary plate functions as a vibration damper and has an integrated air filtration guide. In one embodiment the stationary plate is disposed between two adjacent disks, and the guide comprises one or more grooves through which rotation-induced air may flow. In another embodiment, a plurality of stationary plates may be disposed between a plurality of disks, wherein each of the plurality of stationary plates has a grooved side through which the rotation-induced air may flow. In still another embodiment, the orientation of the grooves in the stationary plate is such that the rotationally-induced airflow impinges the disk drive's voice coil motor.
Abstract:
Disk drives including suspensions and head gimbal assemblies in which the load beam pitch angle is reduced exhibit a reduced disk flutter induced track mis-registration (TMR) at the disk outer diameter. The reduction in the load beam pitch angle may be achieved through variations in the load beam, hinge and/or mount plate configurations, relative positions and/or thickness.
Abstract:
There is provided a disk drive including a disk drive base and a spindle motor hub. The disk drive further includes first and second disks disposed about the spindle motor hub. The disk drive further includes a disk spacer disposed about the spindle motor hub between the first and second disks. The disk spacer includes a circumferential disk spacer opening. The disk drive including a plate body extending between the first and second disks for modifying air flow adjacent the first and second disks during operation of the disk drive, and an inner edge extending from the plate body and disposed towards the hub, the inner edge being disposed within the disk spacer opening overlapping the disk spacer in a direction parallel to the axis of rotation for mitigating against contact between the inner edge and the first and second disks.