Abstract:
Disclosed is a dry carbon dioxide capturing device which can improve sorption efficiency by supplying sorbent for absorbing carbon dioxide or exhaust gas containing carbon dioxide to a recovery reactor in multistages at various heights, The dry carbon dioxide (CO2) capturing device with multistage supply structure comprises a recovery reactor 102 to recover CO2 by contacting a solid sorbent with exhaust gas; a recovery cyclone 110 connected to the recovery reactor 102 to discharge a gas while separating the CO2-captured solid sorbent only; a regenerator 114 connected to the recovery cyclone 110 to receive the CO2-captured solid sorbent and separate CO2 captured in the solid sorbent; and a pre-treatment reactor 122 connected to the regenerator 114 for cooling the solid sorbent free from CO2, wherein at least one of the exhaust gas supply line and the sorbent supply line has two or more arranged according to the height of the recovery reactor 102.
Abstract:
Disclosed is a dry CO2 capturing device with improved energy efficiency, which utilizes a difference in temperature between a regeneration operation of isolating CO2 from an sorbent containing CO2 absorbed therein and a pre-treatment operation of allowing H2O to be adsorbed to CO2. The dry carbon dioxide (CO2) capturing device, includes a recovery reactor for recovering CO2, a recovery cyclone for discharging a gas while separating the CO2-captured solid sorbent only, a regenerator for receiving the CO2-captured solid sorbent and separating CO2 captured in the solid sorbent, and a pre-treatment reactor for cooling the solid sorbent free from CO2, wherein a first heat exchanger is provided between the recovery cyclone and the regenerator to pass the CO2-captured solid sorbent therethrough, and a second heat exchanger is provided between the pre-treatment reactor and the regenerator to pass the solid sorbent free from CO2 therethrough. The first and second heat exchanger include a first and second heat exchange jacket mounted thereon which are connected to each other in a closed loop state.