Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. The roller main body includes a resin coat layer that is formed on an outer circumferential surface of a base body that is made of a metal including aluminum, the resin coat layer being made of a resin material and having electric conductivity. An AC impedance Z obtained from an application of an AC voltage at a frequency in a range from 0.05 Hz to 100 Hz is equal to or higher than 100Ω, and a phase angle θ satisfies a relationship of 0 rad
Abstract translation:显影辊包括辊状主体,其被设置为面对而不接触图像载体的外周表面。 辊主体包括树脂涂层,该树脂涂层形成在由包括铝的金属制成的基体的外周面上,该树脂涂层由树脂材料制成并具有导电性。 从0.05Hz至100Hz的范围内的AC电压的施加获得的交流阻抗Z等于或高于100Ω,相位角& 当功率因数为cos&Theta; = Za / Z时,满足0 rad <&amp; tas; <0.1 rad的关系。
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
A developing device includes a housing, a development roller, and a roller gear. The roller gear is disposed at one axial end of the development roller and transmits a rotational drive force to the development roller. The development roller includes a sleeve and a coating layer. The coating layer is formed by dipping the sleeve in a dipping bath with the sleeve directed axially vertically. The development roller is mounted to the housing such that a lower axial end of the development roller at the time of the dipping is an opposite axial end to the one axial end at which the roller gear is disposed.
Abstract:
The present disclosure relates to a developing roller having a conductive support base, a surface of which is covered with a resin layer, wherein the resin layer contains conductive fine particles and soluble nylon serving as a binder resin, and the resin layer surface has a surface roughness Ra of at least 0.4 μm, a waviness curve cycle of 50 to 400 μm, and a waviness curve height of 2 to 10 μm.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. In the roller main body, a boehmite layer has been formed on an outer circumferential surface of a base body that is made of a metal including aluminum, by a surface treatment by a boehmite method, and a resin coat layer has been formed on a surface of the boehmite layer, the resin coat layer being made of a resin material having electric conductivity.