摘要:
A method for maintaining synchronization of a user terminal (UE) in a radio communication system is proposed, wherein resources reserved for transmissions of random access signals are divided into at least one first portion for contention-based communication, and at least one second portion of said resources for contention-free communication, and wherein a user terminal (UE) is assigned at least one resource of the portion assigned to the contention-free communication, for transmitting signals for maintaining synchronization.
摘要:
A set of channelization codes to be monitored is divided into two groups. The first group includes those codes for which an associated symbol modulation and transmit-diversity scheme is known. In the second group are those codes that are characterized by an unknown symbol modulation or unknown transmit-diversity scheme. The quality of the transmission of each code is then evaluated, using a metric. The metric in turn is used to determine whether the code should be used in estimating the covariance matrix by correlating the RAKE data corresponding to the code (i.e., by computing a correlation matrix for the code) or by first subtracting the channel estimates from the channel samples before correlation (i.e., by computing a covariance matrix for the code). An impairment covariance matrix is computed from the covariance matrices and correlation matrices so computed.
摘要:
Adaptive reconfiguration of a wireless receiver is enabled based on channel geometry. According to an embodiment, the wireless receiver includes a geometry factor processing module and signal processing modules, e.g. such as but not limited to an SIR estimation module, a power estimation module, a despreading module, a low-pass filter, a combing weight generation module, a coefficient estimation module, a synchronization control channel interference canceller module, etc. The geometry factor processing module determines a geometry factor for the channel over which signals are transmitted to the wireless receiver, the geometry factor being a measure of the ratio of total transmitted power received by the wireless receiver to total interference plus noise power at the wireless receiver. One or more of the receiver signal processing modules are reconfigurable based on the geometry factor.