Protocol for Verifying Integrity of Remote Data
    11.
    发明申请
    Protocol for Verifying Integrity of Remote Data 审中-公开
    验证远程数据完整性的协议

    公开(公告)号:US20090290714A1

    公开(公告)日:2009-11-26

    申请号:US12123688

    申请日:2008-05-20

    IPC分类号: H04L9/08

    摘要: An exemplary method for verifying the integrity of remotely stored data includes providing a key; providing a fingerprint, the fingerprint generated using the key in a keyed cryptographic hash function as applied to data of known integrity; sending the key to a remote storage location that stores a copy of the data of known integrity; receiving a fingerprint from the remote storage location, the fingerprint generated using the key in a keyed cryptographic hash function as applied to the remotely stored copy of the data; and verifying the integrity of the remotely stored copy of the data based at least in part on comparing the provided fingerprint to the received fingerprint. Other exemplary methods, systems, etc., are also disclosed.

    摘要翻译: 用于验证远程存储数据的完整性的示例性方法包括提供密钥; 提供指纹,使用密钥在密钥加密散​​列函数中生成的指纹,以应用于已知完整性的数据; 将密钥发送到存储已知完整性数据的副本的远程存储位置; 从所述远程存储位置接收指纹,使用所述密钥在密钥密码散列函数中生成的指纹应用于远程存储的数据副本; 以及至少部分地基于将所提供的指纹与所接收的指纹进行比较来验证远程存储的数据副本的完整性。 还公开了其它示例性方法,系统等。

    Computing isogenies between genus-2 curves for cryptography
    12.
    发明授权
    Computing isogenies between genus-2 curves for cryptography 有权
    计算加密的第2类曲线之间的等值线

    公开(公告)号:US08300807B2

    公开(公告)日:2012-10-30

    申请号:US12350222

    申请日:2009-01-07

    IPC分类号: H04L9/00

    CPC分类号: H04L9/3006

    摘要: This cryptographic curve generation technique provides a faster way of constructing a genus 2 curve. The technique provides a procedure to compute isogenies between genus 2 curves over finite fields. Instead of looping over possible roots, as is typically done when solving Igusa class polynomials, the technique only finds one root and then applies the isogenies to find the others. The technique computes a set of polynomials that define all isogenies. To do this, for a given root of an Igusa class polynomial over a finite field, the technique computes a value of a small modular function ƒ. To the value of this function ƒ, the technique applies an isogeny to find an isogenous ƒ-value. The technique then transforms the ƒ-value back into an Igusa value. Once the Igusa class polynomials are solved they can be used to generate a genus 2 curve which can be used in cryptographic applications.

    摘要翻译: 这种加密曲线生成技术提供了构建第2类曲线的更快速的方法。 该技术提供了一种在有限域上计算第2类曲线之间的等值线的过程。 而不是循环可能的根,如通常在解决Igusa类多项式时完成的,该技术只找到一个根,然后应用等基因来找到其他根。 该技术计算一组定义所有等代的多项式。 为了做到这一点,对于有限域上的Igusa类多项式的给定根,该技术计算小的模块函数ƒ的值。 对于此函数ƒ的值,该技术应用等值线来找到一个均匀的ƒ值。 然后,该技术将ƒ值转换为Igusa值。 一旦解决了Igusa类多项式,就可以使用它们来生成可用于密码应用的第2类曲线。

    Computing modular polynomials modulo large primes
    13.
    发明授权
    Computing modular polynomials modulo large primes 有权
    计算模多项式模数大素数

    公开(公告)号:US08259932B2

    公开(公告)日:2012-09-04

    申请号:US12510991

    申请日:2009-07-28

    IPC分类号: H04L9/26 H04L9/28

    CPC分类号: G06F7/725

    摘要: Systems and methods for computing modular polynomials modulo large primes are described. In one aspect, the systems and methods generate l-isogenous elliptic curves. A modular polynomial modulo a large prime p is then computed as a function of l-isogenous elliptic curves modulo p. In one aspect, the modular polynomial may be used in a cryptosystem.

    摘要翻译: 描述了用于计算模多项式模数大素数的系统和方法。 在一个方面,系统和方法产生l个等式的椭圆曲线。 然后,模数为大素数p的模多项式作为模p的l-均质椭圆曲线的函数被计算。 在一个方面,可以在密码系统中使用模块多项式。

    Security architecture for peer-to-peer storage system
    14.
    发明授权
    Security architecture for peer-to-peer storage system 有权
    对等存储系统的安全架构

    公开(公告)号:US08196186B2

    公开(公告)日:2012-06-05

    申请号:US12123979

    申请日:2008-05-20

    IPC分类号: H04L29/06

    摘要: An exemplary method includes receiving a request to register a peer in a peer-to-peer system; generating or selecting a transaction key for the peer; storing the transaction key in association with registration information for the peer; transmitting the transaction key to the peer and, in response to a request to perform a desired peer-to-peer transaction by another peer, generating a token, based at least in part on the transaction key. Such a token allows for secure transactions in a peer-to-peer system including remote storage of data and retrieval of remotely stored data. Other exemplary techniques are also disclosed including exemplary modules for a peer-to-peer server and peers in a peer-to-peer system.

    摘要翻译: 一种示例性方法包括:在对等系统中接收注册对等体的请求; 生成或选择对等体的交易密钥; 存储与对等体的注册信息相关联的交易密钥; 将所述交易密钥发送到所述对等体,并且响应于至少部分地基于所述交易密钥来生成令牌的请求来执行所述对等交易所需的对等交易。 这样的令牌允许对等系统中的安全事务,包括远程存储数据和检索远程存储的数据。 还公开了其它示例性技术,其包括用于对等服务器和对等系统中的对等体的示例性模块。

    Digital signature for network coding
    15.
    发明授权
    Digital signature for network coding 有权
    网络编码的数字签名

    公开(公告)号:US07743253B2

    公开(公告)日:2010-06-22

    申请号:US11267096

    申请日:2005-11-04

    IPC分类号: H04L9/32

    摘要: Digital signatures for network coding are described. In one aspect, digital signatures for network coding are described. In one aspect, segmented blocks of content for distribution are digitally signed using homomorphic digital signatures generated from an elliptic curve. A linear combination of packets comprising the digitally signed content is distributed to a destination device according to an implemented distribution scheme. The linear combination of packets includes public information when digitally signing the segmented blocks. The homomorphic digital signatures and the public information allow a device receiving one or more packets of the linear combination of packets to verify and authenticate content associated with the one of our packets independent of secure transmission of secret keys and hash digests used to digitally sign the one or more packets.

    摘要翻译: 描述了用于网络编码的数字签名。 在一个方面,描述了用于网络编码的数字签名。 在一个方面,用于分发的内容分段块使用从椭圆曲线生成的同形数字签名进行数字签名。 根据实施的分配方案,将包括数字签名的内容的分组的线性组合分发到目的地设备。 数字线路组合包括在分段块数字签名时的公开信息。 同态数字签名和公共信息允许接收分组的线性组合的一个或多个分组的设备来验证和认证与我们的一个分组相关联的内容,独立于秘密密钥的安全传输和用于数字签名的一些散列摘要 或更多数据包。

    Cryptosystem based on a Jacobian of a curve
    16.
    发明授权
    Cryptosystem based on a Jacobian of a curve 失效
    基于雅可比曲线的加密系统

    公开(公告)号:US07730315B2

    公开(公告)日:2010-06-01

    申请号:US11275215

    申请日:2005-12-19

    IPC分类号: H04L9/00

    摘要: A cryptosystem has a secret based on an order of a group of points on a Jacobian of a curve. In certain embodiments, the cryptosystem is used to generate a product identifier corresponding to a particular product. The product identifier is generated by initially receiving a value associated with a copy (or copies) of a product. The received value is padded using a recognizable pattern, and the padded value is converted to a number represented by a particular number of bits. The number is then converted to an element of the Jacobian of the curve, and the element is then raised to a particular power. The result of raising the element to the particular power is then compressed and output as the product identifier. Subsequently, the encryption process can be reversed and the decrypted value used to indicate validity and/or authenticity of the product identifier.

    摘要翻译: 密码系统具有基于曲线雅可比的一组点的顺序的秘密。 在某些实施例中,密码系统用于生成对应于特定产品的产品标识符。 产品标识符是通过初始接收与产品的副本(或副本)相关联的值来生成的。 使用可识别的图案填充接收的值,并且将填充值转换为由特定位数表示的数字。 然后将该数字转换为曲线的雅可比元素,然后将元素升高到特定的功率。 然后将元件升高到特定功率的结果被压缩并作为产品标识符输出。 随后,可以反转加密处理,并且解密的值用于指示产品标识符的有效性和/或真实性。

    Hashing byte streams into elements of the Shafarevich-Tate group of an abelian variety
    17.
    发明授权
    Hashing byte streams into elements of the Shafarevich-Tate group of an abelian variety 失效
    将字节流散列到一个阿波罗种类的Shafarevich-Tate组的元素中

    公开(公告)号:US07707426B2

    公开(公告)日:2010-04-27

    申请号:US11260950

    申请日:2005-10-28

    IPC分类号: G06F17/00 G06F17/10

    CPC分类号: H04L9/3073 H04L9/3247

    摘要: Systems and methods for cryptographically processing data as a function of a Cassels-Tate pairing are described. In one aspect, a Shafarevich-Tate group is generated from an abelian variety. A Cassels-Tate pairing is determined as a function of elements of the Shafarevich-Tate group. Data is then cryptographically processed as a function of the Cassels-Tate pairing by using Kolyvagin cohomology classes to hash the data into an element of the Shafarevich-Tate group.

    摘要翻译: 描述了用于密码处理作为Cassels-Tate配对的函数的数据的系统和方法。 在一个方面,Shafarevich-Tate组是从阿伯利亚品种产生的。 Cassels-Tate配对是根据Shafarevich-Tate组的要素确定的。 然后,使用Kolyvagin同位学类将数据作为Cassels-Tate配对的函数进行加密处理,将数据散列到Shafarevich-Tate组的元素中。

    Cryptographic Applications of Efficiently Evaluating Large Degree Isogenies
    18.
    发明申请
    Cryptographic Applications of Efficiently Evaluating Large Degree Isogenies 有权
    有效评估大型同位素的密码学应用

    公开(公告)号:US20100082992A1

    公开(公告)日:2010-04-01

    申请号:US12242801

    申请日:2008-09-30

    IPC分类号: H04L9/30 H04L9/06

    摘要: Techniques are disclosed for representing and evaluating large prime degree isogenies for use in cryptographic signature and encryption schemes. An isogeny of prime degree 1 may be represented as an ideal in the form (1, A*alpha+B), where 1 comprises the degree of a prime number, the prime number is split into integers a and b, and alpha is a known endomorphism. For a given degree 1, integers a and b define a unique isogeny, allowing the isogeny to be stored with 3 log(1) bits of information. Techniques are also disclosed to evaluate the isogeny at a given point by decomposing the isogeny into an integer and a plurality of smaller degree isogenies, evaluating the smaller degree isogenies at the point with traditional means, and multiplying the results of the evaluations together and with the integer.

    摘要翻译: 公开了用于表示和评估用于加密签名和加密方案的大质量等值基因的技术。 素数1的均匀性可以表示为形式(1,A *α+ B)的理想,其中1包含质数的程度,素数被分解为整数a和b,而α是 已知的同态 对于给定的程度1,整数a和b定义了一个独特的等同原子,允许使用3个(1)位信息存储等值原理。 还公开了通过将均质分解成整数和多个较小程度的同基物质来评估给定点的同位素的技术,以传统方法评估较小程度的同基因,并将评估结果与 整数。

    Methods for point compression for jacobians of hyperelliptic curves
    20.
    发明授权
    Methods for point compression for jacobians of hyperelliptic curves 有权
    超椭圆曲线雅各布点点压缩方法

    公开(公告)号:US07469048B2

    公开(公告)日:2008-12-23

    申请号:US11277604

    申请日:2006-03-27

    IPC分类号: H04L9/28 H04L9/00 H04K1/00

    CPC分类号: G06F7/725

    摘要: A cryptosystem based on a Jacobian of a hyperelliptic curve is being used. Various methods and apparati are provided for generating a compressed data format that identifies one or more points—on the Jacobian of the hyperelliptic curve, and for subsequently decompressing the compressed format data.

    摘要翻译: 正在使用基于超椭圆​​曲线雅可比的密码系统。 提供了各种方法和装置,用于生成识别超椭圆曲线的雅可比的一个或多个点的压缩数据格式,并用于随后解压缩压缩格式数据。