Abstract:
An electroluminescent display device includes a substrate having an emission area and a transparent portion, the emission area including a sub-pixel, and the transparent portion being adjacent to the sub-pixel; a first electrode in the emission area and over the substrate; a transparent connection pattern in the transparent portion and over the substrate, the transparent connection pattern being spaced apart from the first electrode; a first bank covering an edge of the first electrode and exposing the transparent connection pattern in the transparent portion; and a second bank on the first bank and covering the transparent connection pattern in the transparent portion, wherein the second bank includes a transparent conductive material.
Abstract:
An electroluminescent display device includes an electroluminescent display device includes a substrate; a first pixel row on the substrate including a first plurality of pixels arranged along a first direction; a second pixel row on the substrate including a second plurality of pixels arranged along the first direction, the second pixel row being spaced apart from the first pixel row in a second direction; a first groove between the first and second pixel rows; and a light emitting diode in each pixel of the first and second pixel rows, wherein the first groove includes a first portion at one end of the first pixel row, a second portion at the other end of the first pixel row and a third portion between the first and second portions, and wherein third portion is smaller than the first portion and greater than the second portion.
Abstract:
Provided are an electroluminescent device and an electroluminescent display device. The electroluminescent device includes an anode and a cathode facing each other, a light compensation layer located between the anode and the cathode and having a first refractive index, and an emitting material layer located between the light compensation layer and the cathode, and having a second refractive index higher than the first refractive index.
Abstract:
An organic light emitting device includes a substrate divided into and defined by first to third pixels, a first electrode disposed on the substrate and a second electrode facing the first electrode, a first light emitting layer and a second light emitting layer disposed in the first pixel and in the second pixel, respectively, between the first electrode and the second electrode, a first triplet exciton confinement layer, a third light emitting layer and a second triplet exciton confinement layer disposed over the first to third pixels in this order, on the first light emitting layer and the second light emitting layer, and a first common layer disposed between the first light emitting layer and the second light emitting layer, and the first electrode, and a second common layer disposed between the second triplet exciton confinement layer and the second electrode.
Abstract:
An organic light emitting device, efficacy and lifetime of which are improved by forming a blue light emitting layer disposed over respective pixels in common as a double layer structure, includes a substrate divided into and defined by first to third pixels, a first electrode disposed on the TFT substrate and a second electrode facing the first electrode, the second electrode being spaced from the first electrode, a first light emitting layer and a second light emitting layer disposed in the first pixel and in the second pixel, respectively, between the first electrode and the second electrode, a sub-light emitting layer and a third light emitting layer disposed over the first to third pixels in this order on the first light emitting layer and the second light emitting layer.