Abstract:
An vacuum adiabatic body includes a heat exchange pipeline and a sealing assembly. The heat exchange pipeline includes at least two pipelines which pass through a first plate and a second plate to allow a refrigerant to move between inner and outer spaces. The sealing assembly allows the heat exchange pipeline to pass through the first plate and the second plate without contacting a vacuum space provided between the first and second plates.
Abstract:
A vacuum adiabatic body includes a first plate, a second plate, a space between the first plate and the second plate configured to be a vacuum state, a support including at least a pair of support plates that maintain a distance between the first and second plates, and at least one radiation resistance sheet provided between the pair of support plates to reduce heat transfer between the first plate and the second plate.
Abstract:
There is disclosed a refrigerator including an inner case that defines an exterior appearance of a storage space, with a communication hole formed therein, an outer case spaced apart a predetermined distance from the inner case, with a communication formed at a position corresponding to the communication hole of the inner case, a vacuum space provided between the inner case and the outer case, with being maintained vacuum, to insulate the inner case from the outer case, and a connection pipe passing through the vacuum space, to connect the communication hole of the inner case and the communication hole of the outer case with each other.
Abstract:
The refrigerator includes a body having a storage space for storing a predetermined storage object, wherein the body includes an inner case having the storage space, an outer case having an inside surface spaced a predetermined gap from an inside surface of the inner case to house the inner case, a vacuum space provided between the inner case and the outer case enclosed to maintain a vacuum state for heat insulating between the inner case and the outer case, and a sealing unit for sealing a front of the vacuum space formed between a front of the inner case and a front of the outer case and reducing a heat transfer rate between the inner case and the outer case.
Abstract:
A vacuum adiabatic body includes a first plate, a second plate, a seal, a support, and an exhaust port, wherein the support includes a plurality of bars interposed between the first and second plates, and a bending part that has spots at which the plurality of bars are disposed as highest points and has a spot depressed into the third space at a central portion of the unit grid area as a lowest point is formed in the unit grid area.
Abstract:
Disclosed is a vacuum insulator comprising: a heat diffusion block placed in a third space; a thermoelectric module coming into contact with the heat diffusion block so as to exchange heat therewith, and placed in the third space; and a heat sink exchanging heat with the thermoelectric module and placed in a first space or a second place. According to the present invention, high heat-insulation performance and heat-transfer performance can be obtained.
Abstract:
There is disclosed a refrigerator including an inner case that defines an exterior appearance of a storage space, with a communication hole formed therein, an outer case spaced apart a predetermined distance from the inner case, with a communication formed at a position corresponding to the communication hole of the inner case, a vacuum space provided between the inner case and the outer case, with being maintained vacuum, to insulate the inner case from the outer case, and a connection pipe passing through the vacuum space, to connect the communication hole of the inner case and the communication hole of the outer case with each other.
Abstract:
A refrigerator includes an inner case, an outer case, a vacuum space, and a liquid-gas interchanger. The inner case defines an exterior appearance of a storage space. The outer case is spaced apart a predetermined distance from the inner case. The vacuum space is provided between the inner case and the outer case, and maintains a vacuum to insulate the inner case from the outer case. The liquid-gas interchanger is arranged in the vacuum space to generate heat exchange between a refrigerant after it is exhausted from an evaporator and a refrigerant before it is drawn into an evaporator.
Abstract:
A vacuum adiabatic body includes: a first plate, a second plate, a sealing part sealing the first plate and the second plate to provide a third space, a supporting unit maintaining the third space, and a heat resistance unit for decreasing a heat transfer amount between the first plate and the second plate. The second plate may include a front part and a side part having a different extending direction from the front part, and the side part defines at least one portion of a wall for the third space.
Abstract:
A vacuum adiabatic body according to an embodiment may include a first plate, a second plate, and a seal that seals a gap between the first plate and the second plate. Optionally, the vacuum adiabatic body according to an embodiment may include a support that maintains a vacuum space. Optionally, the vacuum adiabatic body according to an embodiment may include a heat transfer resistor that reduces an amount of heat transfer between the first plate and the second plate. Optionally, the vacuum adiabatic body may include a component coupling portion connected to at least one of the first or second plate so that a component is coupled thereto. Optionally, the second plate may provide the seal. Optionally, the second plate may include an outer panel disposed outside the second plate when the vacuum space is centered. Accordingly, the vacuum adiabatic body may be improved in productivity.