Near-field audio rendering
    11.
    发明授权

    公开(公告)号:US11546716B2

    公开(公告)日:2023-01-03

    申请号:US17401090

    申请日:2021-08-12

    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a source location corresponding to the audio signal is identified. An acoustic axis corresponding to the audio signal is determined. For each of a respective left and right ear of the user, an angle between the acoustic axis and the respective ear is determined. For each of the respective left and right ear of the user, a virtual speaker position, of a virtual speaker array, is determined, the virtual speaker position collinear with the source location and with a position of the respective ear. The virtual speaker array includes a plurality of virtual speaker positions, each virtual speaker position of the plurality located on the surface of a sphere concentric with the user's head, the sphere having a first radius. For each of the respective left and right ear of the user, a head-related transfer function (HRTF) corresponding to the virtual speaker position and to the respective ear is determined; a source radiation filter is determined based on the determined angle; the audio signal is processed to generate an output audio signal for the respective ear; and the output audio signal is presented to the respective ear of the user via one or more speakers associated with the wearable head device. Processing the audio signal includes applying the HRTF and the source radiation filter to the audio signal.

    Emphasis for audio spatialization
    12.
    发明授权

    公开(公告)号:US11463837B2

    公开(公告)日:2022-10-04

    申请号:US17109974

    申请日:2020-12-02

    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a first input audio signal is received. The first input audio signal is processed to generate a first output audio signal. The first output audio signal is presented via one or more speakers associated with the wearable head device. Processing the first input audio signal comprises applying a pre-emphasis filter to the first input audio signal; adjusting a gain of the first input audio signal; and applying a de-emphasis filter to the first audio signal. Applying the pre-emphasis filter to the first input audio signal comprises attenuating a low frequency component of the first input audio signal. Applying the de-emphasis filter to the first input audio signal comprises attenuating a high frequency component of the first input audio signal.

    Near-field audio rendering
    13.
    发明授权

    公开(公告)号:US11122383B2

    公开(公告)日:2021-09-14

    申请号:US16593943

    申请日:2019-10-04

    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a source location corresponding to the audio signal is identified. An acoustic axis corresponding to the audio signal is determined. For each of a respective left and right ear of the user, an angle between the acoustic axis and the respective ear is determined. For each of the respective left and right ear of the user, a virtual speaker position, of a virtual speaker array, is determined, the virtual speaker position collinear with the source location and with a position of the respective ear. The virtual speaker array includes a plurality of virtual speaker positions, each virtual speaker position of the plurality located on the surface of a sphere concentric with the user's head, the sphere having a first radius. For each of the respective left and right ear of the user, a head-related transfer function (HRTF) corresponding to the virtual speaker position and to the respective ear is determined; a source radiation filter is determined based on the determined angle; the audio signal is processed to generate an output audio signal for the respective ear; and the output audio signal is presented to the respective ear of the user via one or more speakers associated with the wearable head device. Processing the audio signal includes applying the HRTF and the source radiation filter to the audio signal.

    SPATIAL AUDIO FOR INTERACTIVE AUDIO ENVIRONMENTS

    公开(公告)号:US20210243546A1

    公开(公告)日:2021-08-05

    申请号:US17175374

    申请日:2021-02-12

    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment. The respective second intermediate audio signal is determined based on a location of the respective sound source, and further based on an acoustic property of the virtual environment. The respective second intermediate audio signal is associated with a second bus. The output audio signal is presented to the listener via the first bus and the second bus.

    REVERBERATION GAIN NORMALIZATION
    15.
    发明申请

    公开(公告)号:US20210065675A1

    公开(公告)日:2021-03-04

    申请号:US17020584

    申请日:2020-09-14

    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).

    Methods and systems for audio signal filtering

    公开(公告)号:US10602292B2

    公开(公告)日:2020-03-24

    申请号:US16442258

    申请日:2019-06-14

    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal. The first output signal is presented to a first ear of a user of a virtual environment, and the second output signal is presented to the second ear of the user. The first portion of the input signal corresponds to a first location in the virtual environment, and the second portion of the input signal corresponds to a second location in the virtual environment.

    Spatial audio for interactive audio environments

    公开(公告)号:US12294852B2

    公开(公告)日:2025-05-06

    申请号:US18461289

    申请日:2023-09-05

    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reflection of the input audio signal in a surface of the virtual environment. The respective second intermediate audio signal is determined based on a location of the respective sound source, and further based on an acoustic property of the virtual environment. The respective second intermediate audio signal is associated with a second bus. The output audio signal is presented to the listener via the first bus and the second bus.

    Methods and systems for audio signal filtering

    公开(公告)号:US12212948B2

    公开(公告)日:2025-01-28

    申请号:US18455585

    申请日:2023-08-24

    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal. The first output signal is presented to a first ear of a user of a virtual environment, and the second output signal is presented to the second ear of the user. The first portion of the input signal corresponds to a first location in the virtual environment, and the second portion of the input signal corresponds to a second location in the virtual environment.

    EFFICIENT RENDERING OF VIRTUAL SOUNDFIELDS

    公开(公告)号:US20240414493A1

    公开(公告)日:2024-12-12

    申请号:US18811563

    申请日:2024-08-21

    Abstract: An audio system and method of spatially rendering audio signals that uses modified virtual speaker panning is disclosed. The audio system may include a fixed number F of virtual speakers, and the modified virtual speaker panning may dynamically select and use a subset P of the fixed virtual speakers. The subset P of virtual speakers may be selected using a low energy speaker detection and culling method, a source geometry-based culling method, or both. One or more processing blocks in the decoder/virtualizer may be bypassed based on the energy level of the associated audio signal or the location of the sound source relative to the user/listener, respectively. In some embodiments, a virtual speaker that is designated as an active virtual speaker at a first time, may also be designated as an active virtual speaker at a second time to ensure the processing completes.

    Multi-application audio rendering
    20.
    发明授权

    公开(公告)号:US11910183B2

    公开(公告)日:2024-02-20

    申请号:US17174287

    申请日:2021-02-11

    CPC classification number: H04S7/306 H04S7/304

    Abstract: Disclosed herein are systems and methods for efficiently rendering audio. A method may include receiving a request to present a first audio track, wherein the first audio track is based on a first audio model comprising a shared model component and a first model component; receiving a request to present a second audio track, wherein the second audio track is based on a second audio model comprising the shared model component and a second model component; rendering a sound based on the first audio track, the second audio track, the shared model component, the first model component, and the second model component; and presenting, via one or more speakers, the an audio signal comprising the rendered sound.

Patent Agency Ranking