Abstract:
An improved liquid vaporization and conditioning system, and associated method, for efficiently vaporizing a liquid sample for accurately determining the constituent components thereof providing enhanced flow rate, pressure and thermal control, the improvement including a combination of a resistance temperature detector, a sweeping bend to, an in-line thermal break, a flow buffering input manifold, enhanced multi-path heater vaporizer construction with four heater units, a vaporizer output mixing manifold and control elements providing a capability for partial shutdown in the event of compromised heating or flow anomalies without risk of flow loss/volume capacity beyond a permissible threshold and an improved, modular heat vaporizer enclosure.
Abstract:
An improved liquid vaporization and conditioning system, and associated method, for efficiently vaporizing a liquid sample for accurately determining the constituent components thereof providing enhanced flow rate, pressure and thermal control, the improvement including a combination of a resistance temperature detector, a sweeping bend to, an in-line thermal break, a flow buffering input manifold, enhanced multi-path heater vaporizer construction with four heater units, a vaporizer output mixing manifold and control elements providing a capability for partial shutdown in the event of compromised heating or flow anomalies without risk of flow loss/volume capacity beyond a permissible threshold and an improved, modular heat vaporizer enclosure.
Abstract:
Provided herein is a solar powered system for a gas sampling and analysis for placement and operation remote from conventional infra-structure that utilizes a minimum of power to obtain a sample extracted from a source such as a pipeline or well-head, conditions the extracted sample, transmits the conditioned sample through vacuum jacketed tubing to an analyzer while maintaining the sample at a temperature and pressure preventing phase transition, condensation or component partitioning.
Abstract:
Provided herein is a solar powered system for a gas sampling and analysis for placement and operation remote from conventional infra-structure that utilizes a minimum of power to obtain a sample extracted from a source such as a pipeline or well-head, conditions the extracted sample, transmits the conditioned sample through vacuum jacketed tubing to an analyzer while maintaining the sample at a temperature and pressure preventing phase transition, condensation or component partitioning.
Abstract:
Provided herein is a solar powered system for a gas sampling and analysis for placement and operation remote from conventional infra-structure that utilizes a minimum of power to obtain a sample extracted from a source such as a pipeline or well-head, conditions the extracted sample, transmits the conditioned sample through vacuum jacketed tubing to an analyzer while maintaining the sample at a temperature and pressure preventing phase transition, condensation or component partitioning.