PREDICTING QUERY EXECUTION TIME
    11.
    发明申请
    PREDICTING QUERY EXECUTION TIME 有权
    预测查询执行时间

    公开(公告)号:US20130226903A1

    公开(公告)日:2013-08-29

    申请号:US13711023

    申请日:2012-12-11

    CPC classification number: G06F17/30474 G06F17/30463

    Abstract: There are provided a system and method for predicting query execution time in a database system. A cost model determination device determines a cost model of a database query optimizer for the database system. The cost model models costs of queries applied to the database system. A profiling device determines profiling queries for profiling input/output cost units and processor cost units relating to the database system, and profiles the cost units using the profiling queries to output profiled cost units. A calibrating device calibrates cost units in the cost model responsive to the profiled cost units to output calibrated cost units. A sampling re-estimator samples and re-estimates a cardinality estimation of a final query plan to output an updated cardinality estimation. A predictor applies the calibrated cost units and the updated cardinality estimation in the cost model to generate a prediction of an execution time of a given query.

    Abstract translation: 提供了一种用于在数据库系统中预测查询执行时间的系统和方法。 成本模型确定装置确定数据库系统的数据库查询优化器的成本模型。 成本模型建模应用于数据库系统的查询成本。 分析设备确定用于分析与数据库系统相关的输入/输出成本单位和处理器成本单元的分析查询,并使用分析查询对成本单位进行概要分析以输出分析成本单位。 校准装置根据成型单位对成本模型中的成本单位进行校准,以输出校准成本单位。 抽样重新估计器对最终查询计划的基数估计进行采样并重新估计,以输出更新的基数估计。 预测器将成本模型中的校准成本单元和更新的基数估计值应用于生成给定查询的执行时间的预测。

    Selective max-pooling for object detection
    12.
    发明授权
    Selective max-pooling for object detection 有权
    用于对象检测的选择性最大池

    公开(公告)号:US09042601B2

    公开(公告)日:2015-05-26

    申请号:US14108295

    申请日:2013-12-16

    CPC classification number: G06K9/66 G06K9/4614 G06K9/4676 G06K9/6257

    Abstract: Systems and methods are disclosed for object detection by receiving an image and extracting features therefrom; applying a learning process to determine sub-regions and select predetermined pooling regions; and performing selective max-pooling to choose one or more feature regions without noises.

    Abstract translation: 公开了通过接收图像并从其中提取特征的对象检测的系统和方法; 应用学习过程来确定子区域并选择预定的汇集区域; 并执行选择性最大化池选择一个或多个没有噪声的特征区域。

    Selective Max-Pooling For Object Detection
    14.
    发明申请
    Selective Max-Pooling For Object Detection 有权
    用于对象检测的选择性最大池

    公开(公告)号:US20140270367A1

    公开(公告)日:2014-09-18

    申请号:US14108295

    申请日:2013-12-16

    CPC classification number: G06K9/66 G06K9/4614 G06K9/4676 G06K9/6257

    Abstract: Systems and methods are disclosed for object detection by receiving an image and extracting features therefrom; applying a learning process to determine sub-regions and select predetermined pooling regions; and performing selective max-pooling to choose one or more feature regions without noises.

    Abstract translation: 公开了通过接收图像并从其中提取特征的对象检测的系统和方法; 应用学习过程来确定子区域并选择预定的汇集区域; 并执行选择性最大化池选择一个或多个没有噪声的特征区域。

Patent Agency Ranking