Abstract:
Systems and methods are disclosed to respond to a query for one or more images by using a processor, applying an indexing strategy which processes images as grouplets rather than individual single images; generating a two layer indexing structure with a group layer, each associated with one or more images in an image layer; cross-indexing the images into two or more groups; and retrieving near duplicate images with the cross-indexed images and the grouplets.
Abstract:
Systems and methods are disclosed for detecting an object in an image by determining convolutional neural network responses on the image; mapping the responses back to their spatial locations in the image; and constructing features densely extract shift invariant activations of a convolutional neural network to produce dense features for the image.
Abstract:
An image retrieval method includes learning multiple object category classifiers with a processor offline and generating classifications scores of images as the semantic attributes; performing vocabulary tree based image retrieval using local features with semantic-aware co-indexing to jointly embed two distinct cues offline for near-duplicate image retrieval; and identifying top similar or dissimilar images using multiple semantic attributes.
Abstract:
A method to reconstruct 3D model of an object includes receiving with a processor a set of training data including images of the object from various viewpoints; learning a prior comprised of a mean shape describing a commonality of shapes across a category and a set of weighted anchor points encoding similarities between instances in appearance and spatial consistency; matching anchor points across instances to enable learning a mean shape for the category; and modeling the shape of an object instance as a warped version of a category mean, along with instance-specific details.
Abstract:
A method to reconstruct 3D model of an object includes receiving with a processor a set of training data including images of the object from various viewpoints; learning a prior comprised of a mean shape describing a commonality of shapes across a category and a set of weighted anchor points encoding similarities between instances in appearance and spatial consistency; matching anchor points across instances to enable learning a mean shape for the category; and modeling the shape of an object instance as a warped version of a category mean, along with instance-specific details.
Abstract:
Methods and systems for distance metric learning include generating two random projection matrices of a dataset from a d-dimensional space into an m-dimensional sub-space, where m is smaller than d. An optimization problem is solved in the m-dimensional subspace to learn a distance metric based on the random projection matrices. The distance metric is recovered in the d-dimensional space.
Abstract:
Systems and methods are disclosed for training a learning machine by augmenting data from fine-grained image recognition with labeled data annotated by one or more hyper-classes, performing multi-task deep learning; allowing fine-grained classification and hyper-class classification to share and learn the same feature layers; and applying regularization in the multi-task deep learning to exploit one or more relationships between the fine-grained classes and the hyper-classes.
Abstract:
Systems and methods are disclosed for autonomous driving with only a single camera by moving object localization in 3D with a real-time framework that harnesses object detection and monocular structure from motion (SFM) through the ground plane estimation; tracking feature points on moving cars a real-time framework to and use the feature points for 3D orientation estimation; and correcting scale drift with ground plane estimation that combines cues from sparse features and dense stereo visual data.
Abstract:
A method for fine-grained image classification on an image includes automatically segmenting one or more objects of interest prior to classification; and combining segmented and original image features before performing final classification.
Abstract:
Systems and methods are disclosed for autonomous driving with only a single camera by moving object localization in 3D with a real-time framework that harnesses object detection and monocular structure from motion (SFM) through the ground plane estimation; tracking feature points on moving cars a real-time framework to and use the feature points for 3D orientation estimation; and correcting scale drift with ground plane estimation that combines cues from sparse features and dense stereo visual data.