Abstract:
A nozzle assembly includes a first body having an upper and an inner surface; a first channel in the first body to receive a material; a second body having an upper and an inner surface; a second channel in the second body, in liquid communication with the first channel, and configured to receive the material from the first channel; a material outlet defined by the first and second bodies configured to discharge the material; a material inlet on the upper surface of the first body, in liquid communication with the first channel, and configured to receive the material into the nozzle assembly; and an upper lip extending from the first body toward the second body and partly defined by the upper surface of the first body. The upper lip includes a lip surface opposite the upper surface of the first body. The upper surface of the second body is configured to contact the lip surface of the upper lip.
Abstract:
Methods related to forming superabsorbent composite core structures using superabsorbent materials, such as superabsorbent polymers (SAP). In one method superabsorbent material is sprayed simultaneously with an adhesive to form a superabsorbent layer adhered to a first flexible sheet of material. A second flexible sheet of material is applied to the superabsorbent layer to position the superabsorbent layer between the first and second flexible sheets of material. At least one of the first or second flexible sheets of material is liquid permeable to allow liquid to penetrate into the superabsorbent layer from outside the composite product.