Abstract:
A network storage server includes a tool for detecting and fixing errors while the network storage server remains online (available for servicing client requests), which includes enabling a user to approve or disapprove remedial changes before the changes are committed. The technique bypasses the usual consistency point process for new or modified data blocks representing potential remedial changes. At a consistency point, dirty data blocks representing the potential remedial changes are written to a change log file residing outside the volume. The modified data blocks are written in sequential order to logical blocks of the change log file. In response to a user input indicating that a potential change should be committed, the corresponding modified data blocks are read from the change log file in the order in which they were written to the change log file, and they are written to persistent storage in that order.
Abstract:
A write allocation technique extends a conventional write allocation procedure employed by a write anywhere file system of a storage system. A write allocator of the file system implements the extended write allocation technique in response to an event in the file system. The extended write allocation technique efficiently allocates blocks, and frees blocks, to and from a virtual volume (vvol) of an aggregate. The aggregate is a physical volume comprising one or more groups of disks, such as RAID groups, underlying one or more vvols of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol also has its own virtual volume block number (vvbn) space and maintains metadata, such as block allocation structures, within that vvbn space. The inventive technique extends input/output efficiencies of the conventional write allocation procedure to comport with an extended file system layout of the storage system.
Abstract:
A storage system provides highly flexible data layouts that can be tailored to various different applications and use cases. The system dynamically balances performance with block sharing, based on service level objectives (SLOs). The system defines several types of data containers, including “regions”, “logical extents” and “slabs”. Each region includes one or more logical extents. Allocated to each logical extent is at least part of one or more slabs allocated to the region that includes the extent. Each slab is a set of blocks of storage from one or more physical storage devices. The slabs can be defined from a heterogeneous pool of physical storage. The system also maintains multiple “volumes” above the region layer. Each volume includes one or more logical extents from one or more regions. Layouts of the extents within the regions are not visible to any of the volumes.