摘要:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
摘要翻译:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可包括再循环的聚苯乙烯材料,其可包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。
摘要:
The present invention includes an apparatus and method for narrowing the residence time distribution of a continuous stirred-tank reactor, or CSTR, which includes the optional procedures of: decreasing the vertical cross-sectional area of the reactor's agitator blades; decreasing the RPM of the agitator blades; and increasing the reactor's L/D ratio. The CSTR can be used in the production of monovinylidene aromatic polymers, such as high impact polystyrene.
摘要:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
摘要翻译:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可包括再循环的聚苯乙烯材料,其可包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。
摘要:
A devolatilizer nozzle comprising at least one perforated flow tube having a non-circular cross-section. In an embodiment, the non-circular cross-section has equal to or greater than 3 sides. The non-circular cross-section of said nozzle may be a triangle, diamond, pentagon, hexagon, heptagon, or octagon. A majority of the perforations in the flow tube of said nozzle may have a maximum strand angle of equal to or less than 45 degrees. The nozzle may further comprise tapered holes, which may be formed by a water jet. The nozzle may further comprise a plurality of parallel flow tubes. The nozzle may comprise 304 stainless steel, AL-6XN stainless steel, or LDX 2101 stainless steel.
摘要:
An accelerated method of determining the failure time of a polyethylene resin by determining the minimum displacement rate, or the time at minimum displacement rate, using ASTM F 1473-01, then following one of these routes: (1) If failure has not yet occurred, cryogenically fracturing the resin specimen and examining it for slow crack growth to determine whether the anticipated, or desired, failure time is generally before or after the predicted failure time; or (2) Applying the minimum displacement rate, or the time at minimum displacement rate, in the appropriate mathematical formula to predict the failure time for the resin. The mathematical formula is derived from the discovery of a power law relationship between the failure time and minimum displacement rate, or between failure time and the time at minimum displacement rate. Thus, it is not necessary to actually test all the way to failure using ASTM F 1473-01, thereby accelerating testing capability and consequently enabling more rapid development of new resins.
摘要翻译:通过使用ASTM F 1473-01确定最小位移速率或最小位移速率的时间来确定聚乙烯树脂的故障时间的加速方法,然后遵循以下路线之一:(1)如果还没有发生故障 对树脂样品进行低温压裂并检查其是否有缓慢的裂纹扩展,以确定预期的或期望的故障时间是否通常在预测的故障时间之前或之后; 或(2)以适当的数学公式应用最小位移速率或最小位移速率时间来预测树脂的失效时间。 数学公式是从发现故障时间和最小位移速率之间的幂律关系,或者在故障时间与最小位移速率时间之间发现的。 因此,不需要使用ASTM F 1473-01实际测试所有的故障,从而加快了测试能力,从而可以更快速地开发新型树脂。
摘要:
A method is provided for perforating a steel plate, forming a devolatilizer nozzle from the steel plate, and heat treating the devolatilizer nozzle. The devolatilizer nozzle may have a yield strength of at least about 110 ksi, and a tensile strength of at least about 140 ksi. The perforations in the steel plate are holes in the nozzle and may be no more than about 0.05 inches in diameter. The thickness of the steel plate may be from about 0 to about 0.75 inches. The nozzle may include at least about 500,000 perforations where the center-to-center hole distance may be at least about 0.08 inches. The capacity of the devolatilizer nozzle may be from about 0 to about 75,000 pounds per hour.